Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тұрақты коэффициентті екінші ретті сызықтық дифференциалдық теңдеулер





 

Бізге мына дифференциалдық теңдеу берілсін

y”+a1y’+a0y=f(x), (1)

мұнда a1, a0 тұрақты сандар. Егер f(x)≠ 0 болса, (1) теңдеу коэффициенттері тұрақты біртектес емес дифференциалдық теңдеу деп аталады. Егер f(x)≡0 болса, яғни

y”+a1y’+a0y=0, (2)

онда (2) теңдеу коэффициенттері тұрақты біртектес дифференциалдық теңдеу деп аталынады.

Әуелі біртектес теңдеуді қарастыралық. (2) теңдеуде y” -ті k2 -қа, y’ -ті k -ға, y -ті k0=1 -ге алмастырсақ алгебралық теңдеу аламыз:

k2+a1k+a0=0, (3)

мұнда k белгісіз сан.

(3) теңдеу (2) дифференциалдық теңдеудің характеристикалық теңдеуі деп аталады, ал оның түбірлері характеристикалық сандар деп аталады. (3) теңдеуді шешіп характеристикалық сандарды табады. (3) теңдеу квадрат теңдеу болғандықтан оның екі түбірі бар (нақты немесе комплекс түйіндес). Мынандай жағдайлар болуы мүмкін:

1. түбірлері нақты және әртүрлі k1, k2 (k1≠k2);

2. түбірлері нақты және өзара тең k1=k2, яғни екі еселі түбірлер;

3. түбірлері жорамал түйіндес сандар k1=ib, k2=-ib;

4. түбірлері түйіндес комплекс сандар k1=a+ib, k2=a-ib.

мұнда i -жорымал бірлік, i2=-1.

Осы әртүрлі жағдайларда біртектес коэффициенттері тұрақты сызықтық теңдеудің жалпы шешімдері таблицада келтірілген.

 

Характеристикалық сандар (2) теңдеудің жалпы шешімі
k1, k2 (k1≠k2) – нақты сандар
k1=k2=k – нақты сан
k1=ib, k2=-ib – түйіндес жорымал сандар
k1=a+ib, k2=a-ib – түйіндес комплекс сандар

 

Енді (1) біртектес емес теңдеуге көшелік. Оның жалпы шешімі (2) біртектес дифференциалдық теңдеудің жалпы шешімі мен (1) біртектес емес дифференциалдық теңдеудің кез-келген шешімінің қосындысына тең болады. Біз (2) біртектес теңдеудің жалпы шешімін білетін болғандықтан (таблицада келтірілген) біртектес емес теңдеудің кез-келген бір жалпы шешімін іздейміз.

Таблицадан көрініп тұрғанындай біртектес теңдеудің жалпы шешімінде кез-келген мән қабылдай алатын екі C1, C2 тұрақты сан бар. C1=1, C2=0 деп алып біртектес теңдеудің бір дербес шешімін табамыз, оны y1(x) деп белгілейік. Тап осы сияқты қылып C1=0, C2=1 деп алып біртектес теңдеудің екінші шешімін аламыз, оны y2(x) деп белгілейік. Мынандай анықтауыш құралық:

Бұл анықтауыш y1(x), y2(x) шешімдерінің вронскианы деп аталынады. Онда осы вронскианды қолдансақ (1) біртектес емес дифференциалдық теңдеудің бір дербес шешімі мынандай болады:

Енді жоғарыда айтқанды ескеріп біртектес емес дифференциалдық теңдеудің жалпы шешімін жаза аламыз:

Мұнда, әрине анықталмаған интегралды есептеуге тура келеді, ал көп жағдайда оның өзі едәуір қиындықтар тудырады. Біртектес емес теңдеудегі мүшенің арнайы түрде болған жағдайларында анықталмаған интегралдың көмегінсіз біртектес емес дифференциалдық теңдеудің дербес шешімінің бірін табуға болатын арнайы әдіс бар, бірақ біз бұл әдісті қарастырмаймыз.

 







Дата добавления: 2015-09-18; просмотров: 7830. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия