Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тұрақты коэффициентті екінші ретті сызықтық дифференциалдық теңдеулер






 

Бізге мына дифференциалдық теңдеу берілсін

y”+a1y’+a0y=f(x), (1)

мұнда a1, a0 тұрақты сандар. Егер f(x)≠ 0 болса, (1) теңдеу коэффициенттері тұрақты біртектес емес дифференциалдық теңдеу деп аталады. Егер f(x)≡0 болса, яғни

y”+a1y’+a0y=0, (2)

онда (2) теңдеу коэффициенттері тұрақты біртектес дифференциалдық теңдеу деп аталынады.

Әуелі біртектес теңдеуді қарастыралық. (2) теңдеуде y”-ті k2-қа, y’-ті k -ға, y -ті k0=1-ге алмастырсақ алгебралық теңдеу аламыз:

k2+a1k+a0=0, (3)

мұнда k белгісіз сан.

(3) теңдеу (2) дифференциалдық теңдеудің характеристикалық теңдеуі деп аталады, ал оның түбірлері характеристикалық сандар деп аталады. (3) теңдеуді шешіп характеристикалық сандарды табады. (3) теңдеу квадрат теңдеу болғандықтан оның екі түбірі бар (нақты немесе комплекс түйіндес). Мынандай жағдайлар болуы мүмкін:

1. түбірлері нақты және әртүрлі k1, k2 (k1≠k2);

2. түбірлері нақты және өзара тең k1=k2, яғни екі еселі түбірлер;

3. түбірлері жорамал түйіндес сандар k1=ib, k2=-ib;

4. түбірлері түйіндес комплекс сандар k1=a+ib, k2=a-ib.

мұнда i -жорымал бірлік, i2=-1.

Осы әртүрлі жағдайларда біртектес коэффициенттері тұрақты сызықтық теңдеудің жалпы шешімдері таблицада келтірілген.

 

Характеристикалық сандар (2) теңдеудің жалпы шешімі
k1, k2 (k1≠k2) – нақты сандар
k1=k2=k – нақты сан
k1=ib, k2=-ib – түйіндес жорымал сандар
k1=a+ib, k2=a-ib – түйіндес комплекс сандар

 

Енді (1) біртектес емес теңдеуге көшелік. Оның жалпы шешімі (2) біртектес дифференциалдық теңдеудің жалпы шешімі мен (1) біртектес емес дифференциалдық теңдеудің кез-келген шешімінің қосындысына тең болады. Біз (2) біртектес теңдеудің жалпы шешімін білетін болғандықтан (таблицада келтірілген) біртектес емес теңдеудің кез-келген бір жалпы шешімін іздейміз.

Таблицадан көрініп тұрғанындай біртектес теңдеудің жалпы шешімінде кез-келген мән қабылдай алатын екі C1, C2 тұрақты сан бар. C1=1, C2=0 деп алып біртектес теңдеудің бір дербес шешімін табамыз, оны y1(x) деп белгілейік. Тап осы сияқты қылып C1=0, C2=1 деп алып біртектес теңдеудің екінші шешімін аламыз, оны y2(x) деп белгілейік. Мынандай анықтауыш құралық:

Бұл анықтауыш y1(x), y2(x) шешімдерінің вронскианы деп аталынады. Онда осы вронскианды қолдансақ (1) біртектес емес дифференциалдық теңдеудің бір дербес шешімі мынандай болады:

Енді жоғарыда айтқанды ескеріп біртектес емес дифференциалдық теңдеудің жалпы шешімін жаза аламыз:

Мұнда, әрине анықталмаған интегралды есептеуге тура келеді, ал көп жағдайда оның өзі едәуір қиындықтар тудырады. Біртектес емес теңдеудегі мүшенің арнайы түрде болған жағдайларында анықталмаған интегралдың көмегінсіз біртектес емес дифференциалдық теңдеудің дербес шешімінің бірін табуға болатын арнайы әдіс бар, бірақ біз бұл әдісті қарастырмаймыз.

 







Дата добавления: 2015-09-18; просмотров: 6741. Нарушение авторских прав; Мы поможем в написании вашей работы!



Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Studopedia.info - Студопедия - 2014-2022 год . (0.018 сек.) русская версия | украинская версия