Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тұрақты коэффициентті екінші ретті сызықтық дифференциалдық теңдеулер





 

Бізге мына дифференциалдық теңдеу берілсін

y”+a1y’+a0y=f(x), (1)

мұнда a1, a0 тұрақты сандар. Егер f(x)≠ 0 болса, (1) теңдеу коэффициенттері тұрақты біртектес емес дифференциалдық теңдеу деп аталады. Егер f(x)≡0 болса, яғни

y”+a1y’+a0y=0, (2)

онда (2) теңдеу коэффициенттері тұрақты біртектес дифференциалдық теңдеу деп аталынады.

Әуелі біртектес теңдеуді қарастыралық. (2) теңдеуде y” -ті k2 -қа, y’ -ті k -ға, y -ті k0=1 -ге алмастырсақ алгебралық теңдеу аламыз:

k2+a1k+a0=0, (3)

мұнда k белгісіз сан.

(3) теңдеу (2) дифференциалдық теңдеудің характеристикалық теңдеуі деп аталады, ал оның түбірлері характеристикалық сандар деп аталады. (3) теңдеуді шешіп характеристикалық сандарды табады. (3) теңдеу квадрат теңдеу болғандықтан оның екі түбірі бар (нақты немесе комплекс түйіндес). Мынандай жағдайлар болуы мүмкін:

1. түбірлері нақты және әртүрлі k1, k2 (k1≠k2);

2. түбірлері нақты және өзара тең k1=k2, яғни екі еселі түбірлер;

3. түбірлері жорамал түйіндес сандар k1=ib, k2=-ib;

4. түбірлері түйіндес комплекс сандар k1=a+ib, k2=a-ib.

мұнда i -жорымал бірлік, i2=-1.

Осы әртүрлі жағдайларда біртектес коэффициенттері тұрақты сызықтық теңдеудің жалпы шешімдері таблицада келтірілген.

 

Характеристикалық сандар (2) теңдеудің жалпы шешімі
k1, k2 (k1≠k2) – нақты сандар
k1=k2=k – нақты сан
k1=ib, k2=-ib – түйіндес жорымал сандар
k1=a+ib, k2=a-ib – түйіндес комплекс сандар

 

Енді (1) біртектес емес теңдеуге көшелік. Оның жалпы шешімі (2) біртектес дифференциалдық теңдеудің жалпы шешімі мен (1) біртектес емес дифференциалдық теңдеудің кез-келген шешімінің қосындысына тең болады. Біз (2) біртектес теңдеудің жалпы шешімін білетін болғандықтан (таблицада келтірілген) біртектес емес теңдеудің кез-келген бір жалпы шешімін іздейміз.

Таблицадан көрініп тұрғанындай біртектес теңдеудің жалпы шешімінде кез-келген мән қабылдай алатын екі C1, C2 тұрақты сан бар. C1=1, C2=0 деп алып біртектес теңдеудің бір дербес шешімін табамыз, оны y1(x) деп белгілейік. Тап осы сияқты қылып C1=0, C2=1 деп алып біртектес теңдеудің екінші шешімін аламыз, оны y2(x) деп белгілейік. Мынандай анықтауыш құралық:

Бұл анықтауыш y1(x), y2(x) шешімдерінің вронскианы деп аталынады. Онда осы вронскианды қолдансақ (1) біртектес емес дифференциалдық теңдеудің бір дербес шешімі мынандай болады:

Енді жоғарыда айтқанды ескеріп біртектес емес дифференциалдық теңдеудің жалпы шешімін жаза аламыз:

Мұнда, әрине анықталмаған интегралды есептеуге тура келеді, ал көп жағдайда оның өзі едәуір қиындықтар тудырады. Біртектес емес теңдеудегі мүшенің арнайы түрде болған жағдайларында анықталмаған интегралдың көмегінсіз біртектес емес дифференциалдық теңдеудің дербес шешімінің бірін табуға болатын арнайы әдіс бар, бірақ біз бұл әдісті қарастырмаймыз.

 







Дата добавления: 2015-09-18; просмотров: 7830. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия