Тұрақты коэффициентті екінші ретті сызықтық дифференциалдық теңдеулер
Бізге мына дифференциалдық теңдеу берілсін y”+a1y’+a0y=f(x), (1) мұнда a1, a0 тұрақты сандар. Егер f(x)≠ 0 болса, (1) теңдеу коэффициенттері тұрақты біртектес емес дифференциалдық теңдеу деп аталады. Егер f(x)≡0 болса, яғни y”+a1y’+a0y=0, (2) онда (2) теңдеу коэффициенттері тұрақты біртектес дифференциалдық теңдеу деп аталынады. Әуелі біртектес теңдеуді қарастыралық. (2) теңдеуде y” -ті k2 -қа, y’ -ті k -ға, y -ті k0=1 -ге алмастырсақ алгебралық теңдеу аламыз: k2+a1k+a0=0, (3) мұнда k белгісіз сан. (3) теңдеу (2) дифференциалдық теңдеудің характеристикалық теңдеуі деп аталады, ал оның түбірлері характеристикалық сандар деп аталады. (3) теңдеуді шешіп характеристикалық сандарды табады. (3) теңдеу квадрат теңдеу болғандықтан оның екі түбірі бар (нақты немесе комплекс түйіндес). Мынандай жағдайлар болуы мүмкін: 1. түбірлері нақты және әртүрлі k1, k2 (k1≠k2); 2. түбірлері нақты және өзара тең k1=k2, яғни екі еселі түбірлер; 3. түбірлері жорамал түйіндес сандар k1=ib, k2=-ib; 4. түбірлері түйіндес комплекс сандар k1=a+ib, k2=a-ib. мұнда i -жорымал бірлік, i2=-1. Осы әртүрлі жағдайларда біртектес коэффициенттері тұрақты сызықтық теңдеудің жалпы шешімдері таблицада келтірілген.
Енді (1) біртектес емес теңдеуге көшелік. Оның жалпы шешімі (2) біртектес дифференциалдық теңдеудің жалпы шешімі мен (1) біртектес емес дифференциалдық теңдеудің кез-келген шешімінің қосындысына тең болады. Біз (2) біртектес теңдеудің жалпы шешімін білетін болғандықтан (таблицада келтірілген) біртектес емес теңдеудің кез-келген бір жалпы шешімін іздейміз. Таблицадан көрініп тұрғанындай біртектес теңдеудің жалпы шешімінде кез-келген мән қабылдай алатын екі C1, C2 тұрақты сан бар. C1=1, C2=0 деп алып біртектес теңдеудің бір дербес шешімін табамыз, оны y1(x) деп белгілейік. Тап осы сияқты қылып C1=0, C2=1 деп алып біртектес теңдеудің екінші шешімін аламыз, оны y2(x) деп белгілейік. Мынандай анықтауыш құралық: Бұл анықтауыш y1(x), y2(x) шешімдерінің вронскианы деп аталынады. Онда осы вронскианды қолдансақ (1) біртектес емес дифференциалдық теңдеудің бір дербес шешімі мынандай болады: Енді жоғарыда айтқанды ескеріп біртектес емес дифференциалдық теңдеудің жалпы шешімін жаза аламыз: Мұнда, әрине анықталмаған интегралды есептеуге тура келеді, ал көп жағдайда оның өзі едәуір қиындықтар тудырады. Біртектес емес теңдеудегі мүшенің арнайы түрде болған жағдайларында анықталмаған интегралдың көмегінсіз біртектес емес дифференциалдық теңдеудің дербес шешімінің бірін табуға болатын арнайы әдіс бар, бірақ біз бұл әдісті қарастырмаймыз.
|