Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Плотность распределения системы двух случайных величин





Плотность распределения является исчерпывающей характеристикой системы непрерывных случайных величин, с помощью которой описание распределения системы становится более наглядным.

Пусть имеется система двух непрерывных случайных величин. Рассмотрим вероятность попадания случайной точки в элементарный прямоугольник со сторонами и (рис. 3.2). Применяя формулу (3.3), получим:

.

Разделим полученную вероятность на площадь этого прямоугольника и перейдем к пределу при и :

. (3.4)

Предположим, что функция дважды дифференцируема, тогда правая часть формулы (3.4) представляет собой вторую смешанную производную функции . Обозначим эту производную :

. (3.5)

Функция называется плотностью распределения системы непрерывных случайных величин .

Геометрически плотность распределения системы двух случайных величин можно изобразить некоторой поверхностью (рис. 3.3), которую называют поверхностью распределения.

Рис. 3.2 Рис. 3.3

Имеют место следующие свойства:

1. Плотность распределения есть функция неотрицательная:

.

2. Двойной несобственный интеграл в бесконечных пределах от плотности распределения системы равен единице:

. (3.6)

3. Функция распределения непрерывной двумерной случайной величины может быть выражена через ее плотность распределения формулой:

. (3.7)

4. Функция распределения случайных величин и , составляющих систему , может быть выражена формулами:

. (3.8)

5. Плотность распределения одномерных случайных величин X и Y, составляющих систему, можно выразить формулами:

; (3.9)

. (3.10)

6. Вероятность попадания непрерывной двумерной случайной величины в область D:

,

равна объему цилиндрического тела, ограниченного сверху поверхностью распределения и опирающегося на область D.







Дата добавления: 2015-08-12; просмотров: 597. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия