Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математическое ожидание функции случайных величин





Пусть , где X – дискретная случайная величина с возможными значениями и вероятностями , , тогда математическое ожидание случайной величины Y можно определить по формуле:

. (4.9)

Если X – непрерывная случайная величина, тогда

, (4.10)

где – плотность распределения случайной величины X.

Аналогично может быть определено математическое ожидание функции от двух случайных аргументов

.

Для дискретных случайных величин:

. (4.11)

Для непрерывных случайных величин:

, (4.12)

где – плотность распределения системы .

Теорема 1. Математическое ожидание суммы как зависимых, так и независимых двух случайных величин равно сумме математических ожиданий этих величин:

(4.13)

Теорема 2. Математическое ожидание произведения случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

(4.14)

Следствие. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

(4.15)

Пример 1. Найти математическое ожидание случайной величины , если плотность распределения случайной величины X имеет вид:

Р е ш е н и е. По формуле (4.10) имеем:

Пример 2. Система равномерно распределена в круге радиуса r с центром в начале координат. Определить математическое ожидание случайной величины

Р е ш е н и е. Система распределена равномерно в области D – круге радиуса r, плотность ее распределения имеет вид:

По формуле (4.12)

Таким образом, искомое математическое ожидание равно 2/3 r.







Дата добавления: 2015-08-12; просмотров: 640. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия