Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математическое ожидание функции случайных величин





Пусть , где X – дискретная случайная величина с возможными значениями и вероятностями , , тогда математическое ожидание случайной величины Y можно определить по формуле:

. (4.9)

Если X – непрерывная случайная величина, тогда

, (4.10)

где – плотность распределения случайной величины X.

Аналогично может быть определено математическое ожидание функции от двух случайных аргументов

.

Для дискретных случайных величин:

. (4.11)

Для непрерывных случайных величин:

, (4.12)

где – плотность распределения системы .

Теорема 1. Математическое ожидание суммы как зависимых, так и независимых двух случайных величин равно сумме математических ожиданий этих величин:

(4.13)

Теорема 2. Математическое ожидание произведения случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

(4.14)

Следствие. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

(4.15)

Пример 1. Найти математическое ожидание случайной величины , если плотность распределения случайной величины X имеет вид:

Р е ш е н и е. По формуле (4.10) имеем:

Пример 2. Система равномерно распределена в круге радиуса r с центром в начале координат. Определить математическое ожидание случайной величины

Р е ш е н и е. Система распределена равномерно в области D – круге радиуса r, плотность ее распределения имеет вид:

По формуле (4.12)

Таким образом, искомое математическое ожидание равно 2/3 r.







Дата добавления: 2015-08-12; просмотров: 640. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия