Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Математическое ожидание функции случайных величин





Пусть , где X – дискретная случайная величина с возможными значениями и вероятностями , , тогда математическое ожидание случайной величины Y можно определить по формуле:

. (4.9)

Если X – непрерывная случайная величина, тогда

, (4.10)

где – плотность распределения случайной величины X.

Аналогично может быть определено математическое ожидание функции от двух случайных аргументов

.

Для дискретных случайных величин:

. (4.11)

Для непрерывных случайных величин:

, (4.12)

где – плотность распределения системы .

Теорема 1. Математическое ожидание суммы как зависимых, так и независимых двух случайных величин равно сумме математических ожиданий этих величин:

(4.13)

Теорема 2. Математическое ожидание произведения случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

(4.14)

Следствие. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

(4.15)

Пример 1. Найти математическое ожидание случайной величины , если плотность распределения случайной величины X имеет вид:

Р е ш е н и е. По формуле (4.10) имеем:

Пример 2. Система равномерно распределена в круге радиуса r с центром в начале координат. Определить математическое ожидание случайной величины

Р е ш е н и е. Система распределена равномерно в области D – круге радиуса r, плотность ее распределения имеет вид:

По формуле (4.12)

Таким образом, искомое математическое ожидание равно 2/3 r.







Дата добавления: 2015-08-12; просмотров: 640. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия