Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Корреляционный момент функций случайных величин и его свойства





Согласно определению корреляционного момента двух случайных величин X и Y, имеем:

Раскрывая скобки и применяя свойства математического ожидания, получим:

(4.30)

Рассмотрим две функции и системы двух случайных величин :

Согласно формуле (4.30)

(4.31)

Рассмотрим основные свойства корреляционного момента и коэффициента корреляции .

Свойство 1. От прибавления к случайным величинам постоянных величин корреляционный момент и коэффициент корреляции не меняются.

Свойство 2. Для любых случайных величин X и Y абсолютная величина корреляционного момента не превосходит среднего геометрического дисперсий случайных величин:

где и – средние квадратичные отклонения случайных величин X и Y.

Свойство 3. Если , то

.

Пример. Имеются две случайные величины X и Y, связанные соотношением . Найти корреляционный момент, если ,

Р е ш е н и е. По формуле (4.30):

Рассмотрим распределение случайных величин, являющихся функцией случайных величин, которые находят широкое применение в математической статистике.







Дата добавления: 2015-08-12; просмотров: 1760. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия