Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон распределения функции одной случайной величины





Одной из важных задач в теории вероятностей является определение закона распределения функции одной или нескольких случайных величин, если известны распределения одного или нескольких аргументов. Такие функции тоже являются случайными величинами.

Примерами простейших функций случайных величин являются:

Начнем рассмотрение с наиболее простой задачи о законе распределения функции одного случайного аргумента, т.е.

. (4.1)

Пусть дискретная случайная величина X имеет ряд распределения:

Х х 1 х 2
,
хn

р p 1 p 2 pn

тогда случайная величина Y будет также дискретной случайной величиной с рядом распределения:

Y y 1 y 2
,
yn

p p 1 p 2 pn

где

Если все значения различны, то для каждого события { } и { } тождественны, поэтому

.

Если же среди есть одинаковые, то их надо объединить в один столбец, а соответствующие вероятности сложить.

Пример 1. Дана дискретная случайная величина X рядом распределения:

X    
.
2

p 0,2 0,5 0,3

Найти закон распределения случайной величины .

Р е ш е н и е. Возможные значения случайной величины Y:

Ряд распределения случайной величины Y:

Y      
p 0,2 0,5 0,3

или

Y  
.
2

p 0,7 0,3

Пусть теперь случайная величина X является непрерывной случайной величиной с плотностью распределения . Найдем плотность распределения случайной величины, заданной формулой (4.1).

Пусть монотонно возрастающая функция.

Так как монотонная функция, то существует обратное отображение .

Найдем сначала функцию распределения случайной величины Y, т.е. :

.

Дифференцируя полученный интеграл по y, получим плотность распределения случайной величины, заданной по формуле (4.1):

. (4.2)

В случае убывающей функции :

, (4.3)

так как в этом случае .

Объединяя (4.2) и (4.3), получим

. (4.4)

Пример 2. Случайная величина X распределена нормально (). Найти закон распределения случайной величины .

Р е ш е н и е. Так как случайная величина X имеет нормальное распределение с параметрами , то ее плотность распределения имеет вид:

.

Функция монотонна на (), поэтому можно применить формулу (4.4).

Обратная функция по отношению к функции есть

,

ее производная

.

Следовательно,

.

Если обратная функция неоднозначная, т.е. одному значению величин Y соответствует несколько значений аргумента , которые обозначим:

где n – число участков, на которых функция (4.1) изменяется монотонно, то формула (4.4) принимает вид:

. (4.5)

Пример 3. Случайная величина X имеет нормальное распределение с параметрами . Найти распределение случайной величины .

Р е ш е н и е. Обратная функция неоднозначная. Одному значению соответствуют два значения функции x:

, .

Применяя формулу (4.5), получим:

.

Итак,

.

Получили плотность распределения случайной величины
Y = X 2.







Дата добавления: 2015-08-12; просмотров: 1244. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия