Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон распределения функции одной случайной величины





Одной из важных задач в теории вероятностей является определение закона распределения функции одной или нескольких случайных величин, если известны распределения одного или нескольких аргументов. Такие функции тоже являются случайными величинами.

Примерами простейших функций случайных величин являются:

Начнем рассмотрение с наиболее простой задачи о законе распределения функции одного случайного аргумента, т.е.

. (4.1)

Пусть дискретная случайная величина X имеет ряд распределения:

Х х 1 х 2
,
хn

р p 1 p 2 pn

тогда случайная величина Y будет также дискретной случайной величиной с рядом распределения:

Y y 1 y 2
,
yn

p p 1 p 2 pn

где

Если все значения различны, то для каждого события { } и { } тождественны, поэтому

.

Если же среди есть одинаковые, то их надо объединить в один столбец, а соответствующие вероятности сложить.

Пример 1. Дана дискретная случайная величина X рядом распределения:

X    
.
2

p 0,2 0,5 0,3

Найти закон распределения случайной величины .

Р е ш е н и е. Возможные значения случайной величины Y:

Ряд распределения случайной величины Y:

Y      
p 0,2 0,5 0,3

или

Y  
.
2

p 0,7 0,3

Пусть теперь случайная величина X является непрерывной случайной величиной с плотностью распределения . Найдем плотность распределения случайной величины, заданной формулой (4.1).

Пусть монотонно возрастающая функция.

Так как монотонная функция, то существует обратное отображение .

Найдем сначала функцию распределения случайной величины Y, т.е. :

.

Дифференцируя полученный интеграл по y, получим плотность распределения случайной величины, заданной по формуле (4.1):

. (4.2)

В случае убывающей функции :

, (4.3)

так как в этом случае .

Объединяя (4.2) и (4.3), получим

. (4.4)

Пример 2. Случайная величина X распределена нормально (). Найти закон распределения случайной величины .

Р е ш е н и е. Так как случайная величина X имеет нормальное распределение с параметрами , то ее плотность распределения имеет вид:

.

Функция монотонна на (), поэтому можно применить формулу (4.4).

Обратная функция по отношению к функции есть

,

ее производная

.

Следовательно,

.

Если обратная функция неоднозначная, т.е. одному значению величин Y соответствует несколько значений аргумента , которые обозначим:

где n – число участков, на которых функция (4.1) изменяется монотонно, то формула (4.4) принимает вид:

. (4.5)

Пример 3. Случайная величина X имеет нормальное распределение с параметрами . Найти распределение случайной величины .

Р е ш е н и е. Обратная функция неоднозначная. Одному значению соответствуют два значения функции x:

, .

Применяя формулу (4.5), получим:

.

Итак,

.

Получили плотность распределения случайной величины
Y = X 2.







Дата добавления: 2015-08-12; просмотров: 1244. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия