Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция распределения системы двух случайных величин





Функцией распределения системы двух случайных величин называется функция двух аргументов , равная вероятности совместного выполнения двух неравенств и , т.е.

. (3.1)

Геометрически функция распределения системы двух случайных величин представляет собой вероятность попадания случайной точки (x, y) в левый нижний бесконечный квадрант плоскости (рис. 3.1) с вершиной в точке (X, Y) (заштрихованная область).

Для дискретной двумерной случайной величины функция распределения определяется по формуле:

. (3.2)

Отметим свойства функции распределения.

1. Функция распределения есть неотрицательная функция, заключенная между нулем и единицей, т.е.

.

2. Функция распределения есть неубывающая функция по каждому из аргументов, т.е.

при ;

при .

3. Если хотя бы один из аргументов обращается в бесконечность, функция распределения равна нулю, т.е.

.

4. Если один из аргументов обращается в бесконечность, функция распределения становится равной функции распределения случайной величины, соответствующей другому аргументу:

;

,

где и – функции распределения случайных величин X и Y, т.е.

.

5. Если оба аргумента равны + ¥, то функция распределения равна единице:

.

6. Вероятность попадания случайной точки в полуполосу равна приращению функции распределения по одному аргументу

;

.

7. Вероятность попадания случайной точки в прямоугольник вычисляется по формуле:

(3.3)

где стороны прямоугольника параллельны координатным осям.







Дата добавления: 2015-08-12; просмотров: 571. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия