Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция распределения системы двух случайных величин





Функцией распределения системы двух случайных величин называется функция двух аргументов , равная вероятности совместного выполнения двух неравенств и , т.е.

. (3.1)

Геометрически функция распределения системы двух случайных величин представляет собой вероятность попадания случайной точки (x, y) в левый нижний бесконечный квадрант плоскости (рис. 3.1) с вершиной в точке (X, Y) (заштрихованная область).

Для дискретной двумерной случайной величины функция распределения определяется по формуле:

. (3.2)

Отметим свойства функции распределения.

1. Функция распределения есть неотрицательная функция, заключенная между нулем и единицей, т.е.

.

2. Функция распределения есть неубывающая функция по каждому из аргументов, т.е.

при ;

при .

3. Если хотя бы один из аргументов обращается в бесконечность, функция распределения равна нулю, т.е.

.

4. Если один из аргументов обращается в бесконечность, функция распределения становится равной функции распределения случайной величины, соответствующей другому аргументу:

;

,

где и – функции распределения случайных величин X и Y, т.е.

.

5. Если оба аргумента равны + ¥, то функция распределения равна единице:

.

6. Вероятность попадания случайной точки в полуполосу равна приращению функции распределения по одному аргументу

;

.

7. Вероятность попадания случайной точки в прямоугольник вычисляется по формуле:

(3.3)

где стороны прямоугольника параллельны координатным осям.







Дата добавления: 2015-08-12; просмотров: 571. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия