Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция распределения системы двух случайных величин





Функцией распределения системы двух случайных величин называется функция двух аргументов , равная вероятности совместного выполнения двух неравенств и , т.е.

. (3.1)

Геометрически функция распределения системы двух случайных величин представляет собой вероятность попадания случайной точки (x, y) в левый нижний бесконечный квадрант плоскости (рис. 3.1) с вершиной в точке (X, Y) (заштрихованная область).

Для дискретной двумерной случайной величины функция распределения определяется по формуле:

. (3.2)

Отметим свойства функции распределения.

1. Функция распределения есть неотрицательная функция, заключенная между нулем и единицей, т.е.

.

2. Функция распределения есть неубывающая функция по каждому из аргументов, т.е.

при ;

при .

3. Если хотя бы один из аргументов обращается в бесконечность, функция распределения равна нулю, т.е.

.

4. Если один из аргументов обращается в бесконечность, функция распределения становится равной функции распределения случайной величины, соответствующей другому аргументу:

;

,

где и – функции распределения случайных величин X и Y, т.е.

.

5. Если оба аргумента равны + ¥, то функция распределения равна единице:

.

6. Вероятность попадания случайной точки в полуполосу равна приращению функции распределения по одному аргументу

;

.

7. Вероятность попадания случайной точки в прямоугольник вычисляется по формуле:

(3.3)

где стороны прямоугольника параллельны координатным осям.







Дата добавления: 2015-08-12; просмотров: 571. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия