Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция распределения системы двух случайных величин





Функцией распределения системы двух случайных величин называется функция двух аргументов , равная вероятности совместного выполнения двух неравенств и , т.е.

. (3.1)

Геометрически функция распределения системы двух случайных величин представляет собой вероятность попадания случайной точки (x, y) в левый нижний бесконечный квадрант плоскости (рис. 3.1) с вершиной в точке (X, Y) (заштрихованная область).

Для дискретной двумерной случайной величины функция распределения определяется по формуле:

. (3.2)

Отметим свойства функции распределения.

1. Функция распределения есть неотрицательная функция, заключенная между нулем и единицей, т.е.

.

2. Функция распределения есть неубывающая функция по каждому из аргументов, т.е.

при ;

при .

3. Если хотя бы один из аргументов обращается в бесконечность, функция распределения равна нулю, т.е.

.

4. Если один из аргументов обращается в бесконечность, функция распределения становится равной функции распределения случайной величины, соответствующей другому аргументу:

;

,

где и – функции распределения случайных величин X и Y, т.е.

.

5. Если оба аргумента равны + ¥, то функция распределения равна единице:

.

6. Вероятность попадания случайной точки в полуполосу равна приращению функции распределения по одному аргументу

;

.

7. Вероятность попадания случайной точки в прямоугольник вычисляется по формуле:

(3.3)

где стороны прямоугольника параллельны координатным осям.







Дата добавления: 2015-08-12; просмотров: 571. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия