Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теорема Бернулли





Теорема Бернулли является одной из первых форм закона больших чисел. Она устанавливает связь между частотой события и его вероятностью.

Теорема Бернулли. При неограниченном увеличении числа независимых опытов в постоянных условиях частота рассматриваемого события A сходится по вероятности к его вероятности p в отдельном опыте.

Обозначим частоту события A через , т.е. , тогда теорему Бернулли можно записать в виде:

. (5.14)

Доказательство. Обозначим через число появлений события A в i -м опыте. Величины независимые случайные величины, имеющие одинаковые ряды распределения:

 
,
1

p p q

где q= 1– p. Каждая из величин есть дискретная случайная величина с двумя возможными значениями 0 и 1.

Следовательно, для каждой величины :

;

.

Частота появления A в n опытах равна – среднему арифметическому наблюдаемых значений.

Можно применить теорему Чебышева, так как случайные величины Xi попарно независимы (опыты независимые), математические ожидания равны, дисперсии ограничены (можно доказать, что pq<;1/4).

По теореме Чебышева получим

,

что и требовалось доказать.

Обобщением теоремы Бернулли на случай, когда опыты происходят при неодинаковых условиях, является теорема Пуассона.

Теорема Пуассона. При неограниченном увеличении числа опытов в переменных условиях частота события сходится по вероятности к средним арифметическим его вероятностей , т.е.

, (5.15)

где – среднее арифметическое вероятностей.

Доказательство. Пусть случайные величины Xi – число появлений события A в i- м испытании . Случайные величины Xi имеют неодинаковые ряды распределения:

    , где .  
p  

Следовательно, для каждой случайной величины :

; .

Обозначим частоту события A через , т.е.

,

тогда

;

.

Можно применить обобщенную теорему Чебышева, так как при , т.е.

.

Теорема доказана.







Дата добавления: 2015-08-12; просмотров: 844. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия