Опред.: Статистической гипотезой, обозначаемой H, называется любое предположение относительно вида или параметров распределения СВ Х, которое может быть проверено по результатам выборки. Любое предположение, однозначно определяющее распределение выборки, называется простой гипотезой. Как следует из определения, могут приниматься различные статистические гипотезы. Пусть дано m+1 распределение P0, P1, …, Pm и известно, что выборка x1, x2, …, xn принадлежит одному из этих распределений. Необходимо определить, к какому именно распределению Pi, i = , принадлежит выборка. Каждая из гипотез Hi (Hi - выборка принадлежит Pi, i = ) будет простой.
Гипотезы могут формулироваться и о значениях параметров распределения известного вида. Параметрическая гипотеза называется простой, если содержит только одно предположение относительно параметра. Параметрическая гипотеза называется сложной, если состоит из конечного или бесконечного числа простых гипотез. При этом одно из таких предположений выбирается в кач-ве основного (исходного) и называется нулевой гипотезой H0. Другие предположения или возможности называют конкурирующими гипотезами H1, H2, … После формулировки статистических гипотез ставится задача их проверки по рез-там случайной выборки. Для проверки статистической гипотезы с помощью статистического критерия устанавливается, соответствуют ли взятые из выборки данные выдвинутой гипотезе или нет, т.е. нужно ли принять или отвергнуть гипотезу.