Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Критерий согласия.





Критерий согласия Пирсона основан на выборе определенной меры расхождения между теоретическим и эмпирическим (полученным из эксперимента) распределениями. Причем задачу проверки согласованности теории с опытными данными можно сформулировать в следующем виде: имеется выборка х1, х2, …, хn наблюденных значений некоторой СВ Х. Требуется определить, что выборочное распределение принадлежит определенному распределению (нормальному, биномиальному, показательному и т.д.) – гипотеза Н0 против альтернативной гипотезы Н1 – распределение не принадлежит выбранному распределению. Допустим вначале, что гипотеза Н0 полностью определяет вид функции Р, и вероятность P(xj Si) может быть вычислена для любого заданного мн-ва S1, S2, …, Sk – это либо интервалы для непрерывной СВ, либо группы отдельных значений дискретной СВ, не имеющие общих точек. Пусть pi = P(xj Si) – вероятность того, что СВ Х принимает значения, принадлежащие мн-ву Si и =1, причем все pi>0, i = . Соответствующие групповые частоты в выборке m1, m2, …, mk, т.е. mi – это число значений СВ Х из выборки, попавших в Si. Ясно, что =n. Если проверяемая гипотеза Н0 верна, то распределение выборки можно рассматривать как статистический аналог для генерального распределения, определяемого функцией р(х). Это значит, что mi представляет собой частоту появления события с вероятностью pi = P(Si) в нашей последовательности из n наблюдений. Следовательно, любое мн-во Si имеет в первом распределении относительные частоты mi/n, а во втором – вероятности pi. Тогда, согласно методу наименьших квадратов, за меру расхождения между распределением выборки и теоретическим распределением примем величину Ci(mi/n - pi)2, где Ci – произвольный коэффициент. Пирсон доказал, что если Ci = n/ pi, то получится мера расхождения вида χ2 = , такая, что при увеличении объема выборки выборочное рапределение величины χ2 стремится к предельному распределению χ2 с υ = κ – r – 1 степенями свободы (к – число интервалов или групп, на кторые разбито все мн-во наблюденных данных, r – число параметров гипотетического распределения вероятностей Р, оцениваемых по данным выборки). Это утверждение следует из того, что если гипотеза Н0 верна, то совместным распределением групповых частот mi, i = , является простое обощение биномиального распределения, и тогда случайные величины Xi = (mi - npi)/ нормально распределены, а их сумма квадратов χ2 = имеет распределение χ2 с υ = κ – r – 1 степенями свободы. Для того, чтобы величина критерия приближенно имела χ2-распределение, теоретические частоты npi должны быть не слишком малыми.

 

 







Дата добавления: 2015-08-12; просмотров: 410. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия