Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уровень значимости и мощность критерия. Ошибки первого и второго рода.





Проверяя гипотезы с помощью статистического критерия, может возникнуть одна из четырех ситуаций: 1) гипотеза H0 истинна (и поэтому H1 – ложна) и предпринимается действие А; 2) гипотеза H1 истинна (и поэтому H0 – ложна) и предпринимается действие А; 3)) гипотеза H0 истинна (и поэтому H1 – ложна) и предпринимается действие В; 4) гипотеза H1 истинна (и поэтому H0 – ложна) и предпринимается действие В. В ситуациях 2 и 3 получается ошибка. Существует 2 типа ошибок. Ошибка, состоящая в принятии гипотезы H0, когда она ложна (ошибка второго рода), качественно отличается от ошибки, состоящей в отвержении H0, когда она истинна (ошибка первого рода). При этом числа αi = αi(δ) = Pi(δ(X)≠ Hi), характеризующие вероятность отвержения гипотезы Hi, когда она верна, называют вероятностями ошибок (i+1)-го рода критерия δ. Набором вероятностей αi(δ) ошибочных решений характеризуется кач-вом критерия δ. Правильное решение также может быть принято двумя способами (ситуации 1 и 4): когда гипотеза H0 принимается, ибо она верна, и когда гипотеза H0 отвергается, ибо она ложна. В ситуации 1 не совершается ошибка первого рода, в ситуации 4 – второго рода.

Уровень значимости критерия не меняет степени риска, связанного с возможностью ошибки второго рода, т.е. с принятием неверной гипотезы. И при данном уровне значимости можно по-разному определить критическую область. Как правило, ее определяют так, чтобы мощность критерия 1 – α1(δ) была возможно большей: P (X ] x1; x2[|H1) = max. Мощностью критерия δ называется вероятность 1 – α1(δ) несовершения ошибки второго рода. Чем больше мощность критерия, тем меньше вероятность принятия неверной гипотезы.

 







Дата добавления: 2015-08-12; просмотров: 814. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия