Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Числовые хар-ки выборочного распределения: выборочное среднее, выборочная дисперсия, медиана, ассиметрия, эксцесс, выборочные моменты.





Пусть случайный эксперимент описывается СВ Х. Повторяя случ. эксперимент n раз, получим последовательность наблюденных значений x1, x2, …, xn СВ Х, называемых выборкой из генеральной совокупности Ωx, описываемой функцией распределения F(x). Опред.: Выборочным средним наблюденных значений выборки назыв. величина, определяемая по формуле , где xi – наблюденное значение с частотой mi, n – число наблюдений, . Частоты mi могут быть равны 1, i = , тогда k=n. Опред.: Статистической дисперсией выборочного распределения назыв. среднее арифметическое квадратов отклонений значений наблюдений от средней арифметической , т.е. , где xi – наблюденное значение с частотой mi', , n – число наблюдений. В кач-ве числовой хар-ки выборки так же применяется медиана. Чтобы вычислить ее все наблюдения располагают в порядке возрастания или убывания. При этом, если число вариант нечетно, т.е. 2m+1, то медианой является m+1 варианта (); если же число вариант четное, то медиана равна среднему арифметическому двух средних значений: = (xm+xm+1)/2. Хар-ка ассиметрии выборочного распределения вычисляется по формуле , а эксцесс выборочного распределения определяется характеристикой . Обобщающими хар-ками выборочных распределений являются статистич. моменты распределения. Начальные статистич. моменты k-того порядка: . Тогда: при k =0 M0 = (mi/n) = 1; при k =1 M1 = (mi/n) = ; при k =2 M2 = (mi/n) = 2; при k =3 M3 = (mi/n) = 3; при k =4 M4 = (mi/n) = 4 и т.д. Практически используются моменты первых четырех порядков. Центральные статистич. моменты k-того порядка: . Тогда: при k =0 =1; при k =1 =0; при k =2 - статистич. дисперсия; при k =3 ; при k =4 и т.д. Отметим, что центральный статистич. момент 3-его порядка служит мерой ассиметрии распределения выборки. Если распределение симметрично, то . На практике моменты порядка выше четвертого почти не применяются, т.к. обладают очень высокой дисперсией и их сколько-нибудь надежное определение потребовало бы выборок большого объема.







Дата добавления: 2015-08-12; просмотров: 610. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия