Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие центральной предельной теоремы.





При суммировании достаточно большого числа СВ закон распределении суммы неограниченно приближается к нормальному при соблюдении некоторых условий. Эти условия, которые математически можно сформулировать различным образом – в более или менее общем виде, - по существу сводятся к требованию, чтобы влияние на сумму отдельных слагаемых было равномерно малым, т.е. чтобы в состав суммы не входили члены, явно преобладающие над совокупностью остальных по своему влиянию на рассеивание суммы. Различные формы центральной предельной теоремы различаются между собой теми условиями, для кот. устанавливается это предельное св-во суммы СВ. В центральной предельной теореме рассматриваются законы распределения случайных величин. Согласно центральной предельной теореме, закон распределения суммы достаточно большого числа независимых (или слабо зависимых) слагаемых, каждое из которых в отдельности сравнительно мало влияет на сумму, сколь угодно близко к нормальному. В практических задачах центральную предельную теорему часто используют для вычисления вероятности того, что сумма нескольких СВ окажется в заданных пределах. Пусть Х1, Х2, …, Хn – независимые СВ с математическими ожиданиями m1, m2, …,mn и дисперсиями D1, D2, …, Dn. Предположим, что условия центральной предельной теоремы выполнены (величины Х1, Х2, …, Хn сравнимы по порядку своего влияния на рассеивание суммы) и число слагаемых n достаточно для того, чтобы закон распределения величины можно было считать приближенно нормальным. Тогда вероятность того, что СВ Y попадает в пределы участка (α, β), выражается формулой P(α <Y<β)= - формула (1), где my, σy – математическое ожидание и среднее квадратическое отклонение величины Y, Φ* – нормальная функция распределения.

Заметим, что центральная предельная теорема может применяться не только к непрерывным, но и к дискретным СВ при условии, что мы будем оперировать не плотностями, а функциями распределения. Действительно, если величины Х1, Х2, …, Хn дискретны, то их сумма Х – также дискретная СВ и поэтому, строго говоря не может подчиняться нормальному закону. Однако все формулы типа формулы (1) остаются в силе, так как в них фигурируют не плотности, а функции распределения Частным случаем центральной предельной теоремы для ДСВ является теорема Лапласа.

 







Дата добавления: 2015-08-12; просмотров: 400. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия