Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Бесконечно малые и бесконечно большие функции.





Бесконечно малые и бесконечно большие функции:Функция у=f(x) называется бесконечно малой при xàx0, если =0Функция у=f(x) называется бесконечно большой при xàx0, если для любого числа М>0 существует число δ=δ(М)>0,что для всех х,удовлетворяющих неравенству 0<|х-х0|<δ,выполняется неравенство |f(x)|>M.Записывают или f(x)->∞ при x->x0. Коротко: ( M>0 δ>0 x: |x-x0|<δ, x≠x0=>|f(x)>M)ó Теоремы:1)Алгебраическая сумма конечного числа бесконечно малых функций есть бесконечно малая функция. Следствие: Так как всякая б.м.ф. ограничена, то из теоремы (2) вытекает: произведение двух б.м.ф.есть функция бесконечно малая.
2)Произведение ограниченной функции на бесконечно малую функцию есть функция бесконечно малая. Следствие: Произведение б.м.ф. на число есть функция бесконечно малая.3)Частное от деления б.м.ф. на функцию, имеющую отличный от нуля предел, есть функция бесконечно малая.4) Если функция α(х) – бесконечно малая (α≠0), то функция есть б.б.ф. и наоборот: если функция f(x)- б.б.,то –б.м. Примеры:1)Пусть =0, ≠0.Функция может быть представлена в виде произведение б.м.ф. α(х) на ограниченную функцию . Но тогда из теоремы (2) вытекает, что частное =α(x)* есть функция бесконечно малая.2)Пусть α(x) есть б.м.ф. при хàx0, т.е. =0. Тогда ( ε>0 δ>0 x: 0<|x-x0|<δ)=> |α(x)|<ε, т.е. > , т.е. >М, где М= . А это означает, что функция есть бесконечно большая. Аналогично доказывается обратное утверждение.3)функция есть б.б.ф. при x->2.Основные теоремы о пределах:1) Предел суммы (разности) двух функций равен сумме (разности) их пределов: 2)Предел произведения двух функций равен произведению их пределов

3) Предел дроби равен пределу числителя, деленному на предел знаменателя, если предел знаменателя не равен нулю: (


 

 







Дата добавления: 2015-08-12; просмотров: 559. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия