Бесконечно малые и бесконечно большие функции:Функция у=f(x) называется бесконечно малой при xàx0, если =0Функция у=f(x) называется бесконечно большой при xàx0, если для любого числа М>0 существует число δ=δ(М)>0,что для всех х,удовлетворяющих неравенству 0<|х-х0|<δ,выполняется неравенство |f(x)|>M.Записывают или f(x)->∞ при x->x0. Коротко: ( M>0 δ>0 x: |x-x0|<δ, x≠x0=>|f(x)>M)ó Теоремы:1)Алгебраическая сумма конечного числа бесконечно малых функций есть бесконечно малая функция. Следствие: Так как всякая б.м.ф. ограничена, то из теоремы (2) вытекает: произведение двух б.м.ф.есть функция бесконечно малая.
2)Произведение ограниченной функции на бесконечно малую функцию есть функция бесконечно малая. Следствие: Произведение б.м.ф. на число есть функция бесконечно малая.3)Частное от деления б.м.ф. на функцию, имеющую отличный от нуля предел, есть функция бесконечно малая.4) Если функция α(х) – бесконечно малая (α≠0), то функция есть б.б.ф. и наоборот: если функция f(x)- б.б.,то –б.м. Примеры:1)Пусть =0, ≠0.Функция может быть представлена в виде произведение б.м.ф. α(х) на ограниченную функцию . Но тогда из теоремы (2) вытекает, что частное =α(x)* есть функция бесконечно малая.2)Пусть α(x) есть б.м.ф. при хàx0, т.е. =0. Тогда ( ε>0 δ>0 x: 0<|x-x0|<δ)=> |α(x)|<ε, т.е. > , т.е. >М, где М= . А это означает, что функция есть бесконечно большая. Аналогично доказывается обратное утверждение.3)функция есть б.б.ф. при x->2.Основные теоремы о пределах:1) Предел суммы (разности) двух функций равен сумме (разности) их пределов: 2)Предел произведения двух функций равен произведению их пределов
3) Предел дроби равен пределу числителя, деленному на предел знаменателя, если предел знаменателя не равен нулю: (