Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Экстремумы функций двух переменных.





Пусть функция z = f(x; y) определена в некоторой области D, точка N(x 0 ;y 0 ) є D. Условия экстремума. Если в точке N(x 0; y 0) дифференцируемая функция z = f(x; y) имеет экстремум, то ее частные производные в этой точке равны нулю: f’(x 0;y 0) =0, f’(x 0;y 0) = 0. Точка, в которой частные производные первого порядка функции z = f(x; y) равны нулю, т. е. f’x= 0, f’y= 0, называется стационарной точкой функции z. Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими. В критических точках функция может иметь экстремум, а может и не иметь. Пусть в стационарной точке (x 0;y 0) и некоторой ее окрестности функция f(x;y) имеет непрерывные частные производные до второго порядка включительно. Вычислим в точке (х 0; y 0) значения А= f”xx(x 0; у 0), В == f”xy(x 0; у 0), С = f”yy(x 0; y 0). Обозначим

Тогда:

1) если ∆ >0, то функция f(x; y) в точке (х 0; y 0) имеет экстремум: максимум, если А<0; минимум, если А >0;

2) если ∆ <0, то функция f(x; y) в точке (x 0;y 0) экстремума не имеет.

3)В случае ∆ = 0 экстремум в точке (х 00) может быть, может не быть. Необходимы дополнительные исследования.








Дата добавления: 2015-08-12; просмотров: 387. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия