Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Касательная плоскость и нормаль к поверхности.





Пусть функция z = f(x;y) дифференцируема в точке (х0; y0) некоторой области D єR2. Рассечем поверхность S, изображающую функцию z, плоскостями х = х0 и y= y0. Плоскость х = х0 пересекает поверхность S по некоторой линии z 0 (у), уравнение которой получается подстановкой в выражение исходной функции z = f(x; y) вместо х числа х0. Точка М0(x0; y0; f(x 0; y0))принадлежит кривой z 0(y) в силу дифференцируемости функции z в точке М0 функция z 0 ( y ) также является дифференцируемой в точке y = y0. Следовательно, в этой точке в плоскости х = x0 к кривой z 0(y) может быть проведена касательная l 1. Проводя аналогичные рассуждения для сечения y= y0, построим касательную l2 к кривой z 0 (x) в точке х = x0. Прямые l1 и l2 определяют плоскость а, которая называется касательной плоскостью к поверхности S в точке М0. Уравнение: z- z0=f’(x0; y0)*(x - х0) + f’(x0; y0)*(y - y0).

Прямая, проходящая через точку М0 и перпендикулярная касательной плоскости, построенной в этой точке поверхности, называется ее нормалью. Канонические уравнения нормали: .








Дата добавления: 2015-08-12; просмотров: 449. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия