Пусть функция z = f(x;y) дифференцируема в точке (х0; y0) некоторой области D єR2. Рассечем поверхность S, изображающую функцию z, плоскостями х = х0 и y= y0. Плоскость х = х0 пересекает поверхность S по некоторой линии z 0 (у), уравнение которой получается подстановкой в выражение исходной функции z = f(x; y) вместо х числа х0. Точка М0(x0; y0; f(x 0; y0))принадлежит кривой z 0(y) в силу дифференцируемости функции z в точке М0 функция z 0 ( y ) также является дифференцируемой в точке y = y0. Следовательно, в этой точке в плоскости х = x0 к кривой z 0(y) может быть проведена касательная l 1. Проводя аналогичные рассуждения для сечения y= y0, построим касательную l2 к кривой z 0 (x) в точке х = x0. Прямые l1 и l2 определяют плоскость а, которая называется касательной плоскостью к поверхности S в точке М0. Уравнение: z- z0=f’(x0; y0)*(x - х0) + f’(x0; y0)*(y - y0).
Прямая, проходящая через точку М0 и перпендикулярная касательной плоскости, построенной в этой точке поверхности, называется ее нормалью. Канонические уравнения нормали: .