Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Касательная плоскость и нормаль к поверхности.





Пусть функция z = f(x;y) дифференцируема в точке (х0; y0) некоторой области D єR2. Рассечем поверхность S, изображающую функцию z, плоскостями х = х0 и y= y0. Плоскость х = х0 пересекает поверхность S по некоторой линии z 0 (у), уравнение которой получается подстановкой в выражение исходной функции z = f(x; y) вместо х числа х0. Точка М0(x0; y0; f(x 0; y0))принадлежит кривой z 0(y) в силу дифференцируемости функции z в точке М0 функция z 0 ( y ) также является дифференцируемой в точке y = y0. Следовательно, в этой точке в плоскости х = x0 к кривой z 0(y) может быть проведена касательная l 1. Проводя аналогичные рассуждения для сечения y= y0, построим касательную l2 к кривой z 0 (x) в точке х = x0. Прямые l1 и l2 определяют плоскость а, которая называется касательной плоскостью к поверхности S в точке М0. Уравнение: z- z0=f’(x0; y0)*(x - х0) + f’(x0; y0)*(y - y0).

Прямая, проходящая через точку М0 и перпендикулярная касательной плоскости, построенной в этой точке поверхности, называется ее нормалью. Канонические уравнения нормали: .








Дата добавления: 2015-08-12; просмотров: 449. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия