Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приклад 1. Отримання математичної моделі аналітичним методом для ресивера.





Отримати статичну модель аналітичним методом для ресивера.

Розрахувати статичну модель та побудувати статичну характеристику для повітряного ресивера.

Дані для розрахунку: Р 0 = 6 атм, Р = 4 атм, Р 1 = 2 атм, кг/г, , .

Визначаємо межі об’єкту моделювання, його вихід та входи.

Відповідно заданій функціональній залежності маємо одну вихідну величину Р та дві вхідні та . Інші можливі входи, наприклад Р 0, Р 1, будуть незмінними і не розглядатимуться як входи. Виходячи з місць розташування вихідної величини Р та входів і , можемо визначити межами об’єкту моделювання місця установки регулюючих органів та .

Як розрахункову схему приймемо схематичне зображення об’єкта моделювання, представлене на рис.

Рис. Повітряний ресивер.

 

Таблиця. Початкові умови.

Назва Позначення Одиниці вимірювання Величина
  Витрата повітря на вході 41,1
  Витрата повітря на виході 41,1
  Тиск повітря на вході 6
  Тиск повітря в ресивері 4
  Тиск повітря на виході 2
  Ступінь відкриття вхідного клапана 0,5
  Ступінь відкриття вихідного клапана 0,5
  Температура повітря 20
  Коефіцієнт витрати вхідного клапана 21,6∙103
  Коефіцієнт витрати вихідного клапана 26,47∙103
  Щільність повітря на вході 7,24∙10-6
  Щільність повітря в ресивері 4,82∙10-6
  Добуток 829∙103

 

Таким чином, маємо ізотермічне розширення газу. Вхідною величиною є , а вихідними і .

Складаємо рівняння матеріального балансу:

Враховуючи те, що:

маємо:

.

Цей вираз є рівнянням статики, він пов’язує вихід з входами і . В рівнянні є щільності повітря і , які для ізотермічного розширення визначаються значеннями тиску і . (, – сталі):

Оскільки:

. то, маємо:

звідси:

.

Таким чином:

.

Підвівши до квадрату і здійснивши деякі перетворення отримаємо наступний вираз:

Тоді:

Для тиску , температури та щільностей повітря і на вході в ресивер і в ресивері відповідно, отримаємо:

;

де, ; .

;

;

, см.

Після підстановки даних з таблиці у рівняння (2.30) отримаємо:

Одержаний вираз і є рівнянням статичної моделі для ресивера у явній формі.

Статична характеристика при буде мати наступний вигляд:

.

Статична характеристика повітряного ресивера зображена на рис.

Р, кг/см2
m

 

Рис. Статична характеристика повітряного ресивера

 

Приклад 2. Побудова математичної моделі резервуару під тиском.

Розробити математичну модель резервуару під тиском, якщо його об’єм становить Vр=10,0 м3, витрати повітря на вході Fn=5110 м3/год, коефіцієнт витрат регулюючого органу , тиск Р=0,8 МПа, температура t=25 .

Матеріальний баланс об’єкту керування записується в вигляді:

.

Сталими параметрами нелінійної моделі є об’єм Vр резервуару, газова стала R, коефіцієнт витрати регулюючого органу , стала с, яка залежить від показника адіабати для даного газу.

До змінних параметрів відносяться: тиск Р в резервуарі, який є вихідним для об’єкту керування, температура газу Т, витрати газу Fn, площа поперечного перетину регулюючого органу SP.

Структурно-логічна схема об’єкта керування зображена на малюнку рис. 4.19..

 

Рис. Структурно-логічна схема об’єкту керування.

 

Рівняння матеріального балансу запишемо в вигляді:

. Змінні параметри:

Функцію розкладемо в ряд Тейлора навколо номінального значення температури :

. Рівняння статики .

Підставляючи це рівняння в рівняння з відхиленнями, після множення та нехтування складовими малої ступені важливості, вилучення рівняння статики матимемо

Приведемо це рівняння до відносних величин, вводячи позначення:

Тоді, розділивши відповідне рівняння на , матимемо:

Позначимо – стала часу;

– коефіцієнти передачі.

Тоді рівняння математичної моделі об’єкту матиме вигляд:

.

Сталу с знаходимо за формулою . Показник адіабати для двохатомних газів k=1,4 (в нашому випадку). Отже, с=0,684.

З рівняння статики знаходимо поперечний перетин регулюючого органу:

м2.

Знайдемо сталу часу об’єкту:

c.

Сталу часу знайдено для випадку, коли тиск змінюється від 0,8 МПа до атмосферного. Враховуючи обмежуючі умови на відхилення величини тиску від номінального значення, стала часу буде меншою. Якщо, наприклад, у відповідності до технологічного процесу зміна тиску в резервуарі має бути 20% від номінального значення, стала часу буде c.

Коефіцієнти передачі об’єкта будуть:

;

.

Рівняння математичної моделі матиме вигляд:

Передаточні функції щодо відповідних каналів впливу будуть:

.

Час запізнення об’єкта c.

Час запізнення для такого об’єкта значно менший за сталу часу та для практичних розрахунків ним можна знехтувати.







Дата добавления: 2015-07-04; просмотров: 676. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия