Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Несобственные интегралы





 

Пусть функция задана на полуинтервале , где , а величина может быть как конечным числом, так и . Предположим, что интегрируема на любом отрезке , . Полагаем по определению

и называем это число несобственным интегралом. В случае, когда предел (1) существует, то говорим, что соответствующий интеграл сходится; в противном случае будем говорить, что он расходится.

Несобственный интеграл (1) применяется в двух типичных ситуациях.

1) Пусть . Тогда

2) Пусть d∈ ℝ и функция неограничена на полуинтервале .

Если на полуинтервале , то несобственный интеграл равен площади неограниченной фигуры -- криволинейной трапеции, ограниченной сверху графиком функции , снизу – осью Ох и слева – вертикальной прямой (см. рис. 1)

 

Рис.1 Несобственный интеграл

Отметим, что если функция на самом деле интегрируема на отрезке (это означает, в частности, что ), то коллизии обозначений не возникает -- несобственный интеграл в смысле (1) будет равен определенному интегралу функции на отрезке .

Аналогично определяется несобственный интеграл для функций, определенных на полуинтервале , где и :

В примере § 16 мы фактически вычислили несобственный интеграл .

Cвойство линейности несобственных интегралов. Если интегралы сходятся, то для любых чисел k и m сходится также и интеграл , и он равен .

Это свойство вытекает из свойства линейности предельного перехода.

Свойство аддитивности несобственных интегралов. Пусть интегрируема на отрезке для фиксированного и любого такого, что . Выберем точку . Несобственный интеграл сходится в том и только том случае, если сходится несобственный интеграл При этом условии имеет место равенство

Формула Ньютона-Лейбница для несобственных интегралов. Пусть -- первообразная непрерывной функции на интервале (c,d). Предположим, что существуют пределы

Тогда несобственный интеграл сходится, причём

Равенство (5) вытекает из формулы Ньютона-Лейбница для обычных интегралов и соотношений (4).

Пример 1. Вычислим

Пример 2. Докажем???







Дата добавления: 2015-08-12; просмотров: 445. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия