Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Потенциальная энергия взаимодействия.





 

Рассмотрим замкнутую систему, состоящую из двух взаимодействующих частиц (рис.4.7).

Введем вектор , где и - радиус-векторы частиц. Расстояние между частицами равно модулю этого вектора.

Будем считать, что силы взаимодействия частиц и зависят только от расстояния между ними, и направлены вдоль прямой, соединяющей частицы:

, (4.13)

где - некоторая функция , - орт вектора (рис.4.8).

По третьему закону Ньютона = - .

Уравнения движения частиц .

Умножим первое уравнение на , второе – на и сложим:

. (4.14)

Левая часть этого выражения представляет собой приращение кинетической энергии системы за время , а правая частьработу внутренних сил за то же время:

.

Подставив в это выражение формулу (4.13), получаем .

Из рис.4.7 видно, что скалярное произведение равно приращению расстояния между частицами.

Тогда .

Выражение есть приращение некоторой функции от :

.

Следовательно, и выражение (4.14) можно представить в виде:

.

или таким образом, величина для замкнутой системы сохраняется.

Функция представляет собой потенциальную энергию взаимодействия. Она

· зависит от расстояния между частицами.

·

 
 

работа внутренних сил

Т.е. не зависит от путей, по которым перемещались частицы, а определяется только начальными и конечными расстояниями между частицами.

Таким образом, силы взаимодействия вида (4.13) являются консервативными.

 







Дата добавления: 2015-08-12; просмотров: 611. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия