Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Плоскость и прямая в пространстве.





3.1. Уравнение поверхности в пространстве.

Положение точки в пространстве определяется тремя координатами.

Прямоугольная декартова система координат в пространстве представляет собой три перпендикулярные прямые Ox, Oy, Oz, снабженные масштабами и направлениями. Такие прямые называются координатными осями. Координатами точки M 0(x 0 ,y 0 ,z 0) называются координаты оснований перпендикуляров, опущенных из этой точки на координатные оси.

Уравнением поверхности (в выбранной системе координат) называется такое уравнение с тремя переменными F (x,y,z)=0, которому удовлетворяют координаты каждой точки, лежащей на этой поверхности, и только они.

3.2. Плоскость в пространстве.

Пусть плоскость проходит через точку M 0(x 0 ,y 0 ,z 0) перпендикулярно вектору =(А,B,C). Этими условиями определяется единственная плоскость в пространстве Oxyz. Вектор называется нормальным вектором плоскости. Для произвольной точки плоскости M (x,y,z) («текущей точки») векторы = (x-x 0, y-y 0, z-z 0) и должны быть перпендикулярны. Следовательно,

 

 

скалярное произведение этих векторов равно нулю, т.е. (, )=0. Полученное уравнение представим в координатной форме:

А (x- x 0) + В (y- y 0) + C (z- z 0) = 0. (18)

M
M0
Уравнение (18) представляет уравнение плоскости, перпендикулярной данному вектору = (А,B,C) и проходящей через данную точку M 0(x 0 ,y 0 ,z 0) (рис. 9).

y
x
 
Рис. 9
Пример 16. Составить уравнение плоскости, проходящей через точку M 0(-1,0,2) и перпендикулярной вектору = (2,5,-1).

Решение. Искомое уравнение имеет вид 2(x+ 1)+5(y- 0)-1(z- 2)=0. ■

Уравнение плоскости, записанное в виде

Аx + By + Cz + D = 0 (19)

(где D = - Аx 0 - By 0 - Cz 0), называется общим уравнением плоскости. Так, в предыдущем примере уравнению можно придать вид 2 x+ 5y-z+4 = 0.

Замечание. Всякое уравнение вида (19) (где хотя бы одно из чисел А, В, С не равно нулю) задает плоскость в пространстве и, наоборот, уравнение любой плоскости есть уравнение первой степени.

Отметим, что уравнение (, )=0 можно применить для вывода уравнения плоскости в пространстве, заданной тремя точками M 1(x 1 ,y 1 ,z 1), M 2(x 2 ,y 2 ,z 2), M 3(x 3 ,y 3 ,z 3), не лежащими на одной прямой. Так, взяв в качестве нормального вектора = - векторное произведение на , а в качестве M 0 точку M 1, получим

(, ) = 0,

что приводит к уравнению плоскости в форме определителя:

. (20)

В частности, если плоскость не проходит через начало координат и пересекает координатные оси в точках M 1 (a,0,0), M 2 (0, b,0), M 3 (0,0, c), то уравнение (20) приводится к виду

, (21)

называемому уравнением плоскости «в отрезках».

Рассмотрим далее частные случаи общего уравнения плоскости.

Если D= 0, то уравнение Аx+By+Cz= 0 определяет плоскость, проходящую через начало координат. Другие частные случаи определяются расположением нормального вектора = (А,B,C). Так, например, если А= 0, то уравнение By+Cz+D= 0 определяет плоскость, параллельную оси Ox (и проходящую через ось Ox, если D= 0); если А=B= 0, то уравнение Cz+D= 0 определяет плоскость, параллельную плоскости Oxy (в частности, z = 0 - уравнение самой плоскости Oxy).

Двугранный угол между двумя плоскостями, заданными своими общими уравнениями

А 1 x + B 1 y + C 1 z + D 1 = 0,

А 2 x + B 2 y + C 2 z + D 2 = 0, (22)

равен углу j между их нормальными векторами =(А 1 ,B 1 ,C 1) и = =(А 2 ,B 2 ,C 2) и определяется по формуле

cos j = = ; (23)

угол j лежит в пределах от 0 до p; другой двугранный угол, образованный двумя пересекающимися плоскостями, равен p - j.

Пример 17. Найти угол между плоскостями, заданными уравнениями 3 x-y- 2 z +250 = 0 и x -2 y+z -111 = 0.

Решение. Находим косинус угла между нормальными векторами =(3,-1,-2) и =(1,-2,1):

cos j = = ;

отсюда j=arccos . Другой двугранный угол равен 180°-71°=109°. ■

Две данные плоскости (22) перпендикулярны тогда и только тогда, когда их нормальные векторы =(А 1 ,B 1 ,C 1) и =(А 2 ,B 2 ,C 2) перпендикулярны между собой, откуда скалярное произведение (, )=0 или =0. Например, плоскости 3 x - y +2 z -31 = 0 и 5 x+ 3 y -6 z +1 = 0 перпендикулярны, так как 3×5+(-1) ×3+2×(-6)=0. Две данные плоскости параллельны тогда и только тогда, когда их нормальные векторы и коллинеарны, т.е. при выполнении условия .

Пример 18. Составить уравнение плоскости, проходящей через точку M 0(1,-1,0) и параллельной плоскости 2 x +3 y- 4 z -1 = 0.

Решение. Так как у параллельных плоскостей один и тот же нормальный вектор =(2,3,-4), то искомое уравнение имеет вид 2(x -1)+3(y+ 1)-4(z- 0)=0 или 2 x +3 y- 4 z +1 = 0. ■

 

3.3 [кроме ФЭУ] .Прямая линия в пространстве.

Линия в пространстве определяется совместным заданием двух уравнений F (x,y,z)=0, F (x,y,z)=0 как пересечение двух поверхностей, задаваемых этими уравнениями.

Так, прямая в пространстве может быть задана как линия пересечения двух плоскостей, т.е. как множество точек, удовлетворяющих системе

Если прямая в пространстве параллельна вектору = (а 1, а 2, а 3) (называемому направляющим вектором) и проходит через точку M 0(x 0 ,y 0 ,z 0), то её уравнения могут быть получены из условия коллинеарности векторов = (x-x 0, y-y 0, z-z 0) (где M (x,y,z) - произвольная точка прямой) и = (а 1, а 2, а 3):

. (24)

Уравнения (24) называются каноническими уравнениями прямой в пространстве.

Пример 19. Составить уравнения прямой, проходящей через точки M 0(1,-1,3) и M 1(0,3,5).

Решение. Воспользуемся уравнениями (24), взяв в качестве направляющего вектора = (0-1,3-(-1),5-3) или = (-1,4,2):

.

 







Дата добавления: 2015-08-12; просмотров: 517. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия