Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

The Gauss-Jordan Method





Consider the Gauss method in the case where the number of equations coincides with that of unknowns:

(6)

Suppose that а 11 0; let us divide the first equation by this coefficient:

. (*)

Multiplying the resulting equation by – а 21 and adding it to the second equation of system (6), we obtain

.

Similarly, multiplying equation (*) by – а n1 and adding it to the last equation of system (6), we obtain

.

At the end, we obtain the new system of equations with n1 unknowns:

(7)

 

 

System (7) is obtained from system (6) by applying linear transformations of equations; hence this system is equivalent to (6), i.e., any solution of system (7) is a solution of the initial system of equations.

To get rid of х 2 in the third, the forth, …, n th-equation, we multiply the second equation of system (7) by and, multiplying this equation by the negative coefficients of х 2 and summing them, obtain

Performing this procedure n times, we reduce the system of equations to the diagonal form

We determine хn from the last equation, substitute it in the preceding equation and obtain xn -1, and so on; going up, we determine х 1 from the first equation. This is the classical Gauss method.

Consider the system of m equations with n unknowns

(8)

Definition. The matrix composed of the coefficients of system (8) is called the principal matrix of this system:

.

Adding the column of free terms of system (8) to this matrix, we obtain the augmented matrix

.

The following linear operations on the rows of such a matrix are allowed:

- permutation of rows;

- multiplication of a row by some number and adding it to another row;

- permutation of columns (but we must remember to which unknowns they correspond);

- no operations on columns are allowed (columns cannot be multiplied by numbers, summed, etc).

The Gauss-Jordan method consists in reducing (by linear operation on rows) the principal matrix to the identity matrix, i.e., to the form

.

If the columns were not interchanged, the solution of the system of linear equations is

Examples. Solve the following system of equations by the Gauss-Jordan method:

We compose the augmented matrix of the system and, applying linear combinations of rows, reduce the principal matrix to the identity:







Дата добавления: 2015-09-04; просмотров: 783. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия