Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

The Vector, Parametric, Canonical, and General Equations of a Straight Line





 

The position of a straight line in space is determined by a point on this line and a vector parallel to the line. Let us write an

equation of such a line in space.

z

0 y

x

To this end, we take an arbitrary point on the line, join М0 and М to the origin, and find the coordinates of the radius-vectors

,

.

It is seen from the figure, that .

If the point М belongs to the straight line, then the vectors and are collinear.

Consequently, these vectors meet the collinearity condition

,

where t is a parameter.

Let us write the collinearity condition in the form

; (*)

equation (*) is the vector equation of the given line.

Suppose given the coordinates of the point M0(x0,y0,z0) and the direction vector . Let us write the left-hand side of equation (*) in the vector form

the direction vector is

.

Let us represent equation (*) in the form

.

Equating the respective coefficients of the unit vectors on the right- and left- sides, we obtain parametric equations of the straight line:

or (27)

Eliminating the parameter t, we obtain the canonical equations of a straight line:

. (28)

Example. Write the canonical equations of the straight line passing through the point parallel to the vector . We compose the canonical equation by formula (28):

.

Equating each fraction to a parameter t, we obtain the parametric equations of the line:

 

The general equation of a straight line in space. Since a straight line in space is represented as the intersection of two planes, the general equation of a straight line in space has the form of a system

where the first and the second equations are the equations of the corresponding planes.

It is always possible to transform the general equation of a straight line into a canonical equation and vice versa.

Since the direction of is perpendicular to those of the vectors and , it follows that

,

i.e., the canonical equation is

.

The angle between straight lines in space. The parallelism and perpendicularity conditions for straight lines. Let us find the angle between intersecting right lines given by their canonical equations

; .

The angle between these two lines is equal to the angle between their direction vectors

; ,

i.e.,

.

The parallelism and perpendicularity conditions for right lines coincide with the collinearity and perpendicularity conditions of their direction vectors and .

If straight lines are perpendicular, then , i.e., , and the perpendicularity condition is

.

If straight lines are parallel, then the vector is collinear to , i.e., their coordinates are proportional, and the proportionality condition is

.

 

The equation of the straight line passing through two given points. Suppose given two points and in space.

z

M2

M1

 

 

0 y

 

x

 







Дата добавления: 2015-09-04; просмотров: 4844. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия