Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

БАРИЦЕНТРИЧЕСКИЕ КООРДИНАТЫ НА ПРЯМОЙ





Пусть в пространстве заданы две различные точки и . Все точки , принадлежащие пространству , определяемые с помощью уравнения

, (1)

лежат на прямой . См. Рис. 13.1.

Рис. 13.1. Линейная интерполяция двух точек

Для интервала изменения параметра точка лежит между точками и , и делит отрезок в отношении . Уравнение (1) представляет собой барицентрическую комбинацию двух точек в пространстве . Барицентрическая комбинация существует и для трех точек в пространстве :

.

Очевидно, что точка связана с точками 0 и 1 такой же барицентрической комбинацией, которая связывает точку с точками и . Следовательно, линейная интерполяция является аффинным отображением действительной оси на прямую линию в пространстве . С линейной интерполяцией тесно связан метод барицентрических координат, предложенный Мебиусом.
Для трех коллинеарных точек , расположенных в пространстве , можно записать связывающее уравнение

,

где - барицентрические координаты точек и .

Отметим, что из уравнения (1) мы назвали барицентрической комбинацией. Поэтому связь метода барицентрических координат и линейной интерполяции очевидна:

Барицентрические координаты могут принимать отрицательные значения, это происходит, если .

Для произвольных коллинеарных точек , , можно записать выражения для барицентрических
координат точки относительно и :

.

Барицентрические координаты могут быть определены не только на прямой линии, но и на плоскости. Далее мы рассмотрим этот случай.

Для линейной интерполяции важным понятием является простое отношение трех точек, определяемое выражением

.

Если и - барицентрические координаты точки относительно точек и , то можно записать, что

.

Барицентрические координаты точки и их частное не изменяются при аффинных преобразованиях. Следовательно, можно записать

,

где - аффинное преобразование.

Последнее выражение показывает, что при аффинных преобразованиях сохраняется простое отношение трех точек.
Сохранение простого отношения трех точек является важным свойством линейной интерполяции, которое можно использовать для аффинного отображения единичного интервала на произвольный интервал изменения параметра. Мы определили отрезок прямой как аффинный образ единичного интервала , хотя его также можно определить как образ любого произвольного интервала . Этот интервал сам может быть определен аффинным отображением интервала , и наоборот. Если и , то это отображение задается с помощью уравнения

.

Тогда произвольная точка на интерполирующей прямой определяется одним из следующих двух уравнений:

или

.

При конструировании обводов из дуг параметрических кривых выбирают единичный интервал изменения параметра для каждой дуги. Исключение составляют параметрические сплайны и кривые, построенные с помощью техники NURBS, у которых параметр равен нулю на одном конце обвода и принимает возрастающие значения в узлах по мере продвижения к другому концу. Другим практическим применением произвольного интервала изменения параметра является локальная модификация какого-либо произвольного участка дуги обвода. Например, в случае кривых Безье требуется определить векторы управляющих точек внутреннего участка дуги для интервала (рис. 13.2).

Рис. 13.2. Определение характеристической ломаной внутреннего участка дуги кривой Безье







Дата добавления: 2015-09-04; просмотров: 1612. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия