Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

АНАЛИЗ АЛГОРИТМА КАСТЕЛЬЖО ДЛЯ ПРОИЗВОЛЬНОЙ КРИВОЙ





Приведенные выражения для квадратичной параболы легко обобщаются на случай произвольной пространственной кривой -го порядка.

Пусть - произвольные точки в пространстве , . Тогда для параболы -го порядка запишем

(8)

Отметим, что . Значение определяет точку со значением параметра на кривой Безье .

Ломаная , образованная отрезками прямых, соединяющих точки , называется ломаной Безье, или управляющей ломаной кривой . Соответственно, вершины ломаной называются управляющими точками, или точками Безье.
На рис. 6 показано определение точки на кубической кривой Безье с помощью алгоритма Кастельжо.

Рис. 13.6. Построение точки на кубической кривой с использованием повторяющейся линейной интерполяции

Промежуточные точки удобно записывать, используя схему Кастельжо, т.е. в виде треугольного массива.
Например, для кубической кривой схема Кастельжо выглядит следующим образом:

Произвольную точку кривой также можно вычислить с помощью полиномов Бернштейна:

(9)

Важно, что в случае это уравнение дает точку на кривой:

.

13.2.3. ОБОБЩЁННЫЙ АЛГОРИТМ ДЛЯ ТРЕУГОЛЬНОЙ ПОРЦИИ ПОВЕРХНОСТИ

Для определения точки, инцидентной треугольной порции поверхности, с заданными барицентрическими координатами используем обобщение линейной интерполяции для произвольной кривой -го порядка.

Дано: характеристический многогранник треугольной порции поверхности и точка в пространстве , заданная барицентрическими координатами .

Найти: точку, инцидентную заданной порции поверхности, с соответствующими барицентрическими координатами.







Дата добавления: 2015-09-04; просмотров: 870. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия