Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

СВОЙСТВА ОБОБЩЕННЫХ ПОЛИНОМОВ БЕРНШТЕЙНА





Треугольную порцию поверхности можно определить, используя обобщенные полиномы Бернштейна:

, (11)

где - барицентрические координаты,

, , .

Сумма полиномов, определенных на заданном интервале, равна единице

 

Свойства обобщенных полиномов Бернштейна сходны со свойствами одномерных полиномов:

1. Сумма полиномов, определенных на заданном интервале, равна единице
.
Это свойство обеспечивает инвариантность полиномов при аффинных преобразованиях. Следовательно, аффинно инвариантны и треугольные порции поверхностей Безье, определяемые этим набором полиномов. Заметим, что выше мы доказали это свойство, используя геометрическую интерпретацию.

2. Все полиномы положительны на заданном интервале

.

3. Возможно рекурсивное вычисление полиномов степени , если известны полиномы степени :

, .

Пример
Запишем формулы обобщенных полиномов Бернштейна для случая и представим результаты в виде схемы (Рис. 10).
На рис. 11 и рис. 12 показан вид некоторых базисных полиномов треугольной кубической порции поверхности.

Рис. 13.10. Формулы обобщенных кубических полиномов Бернштейна

Рис. 13.11. Семейство кубических обобщенных полиномов Бернштейна

 

 

Рис. 13.12. Примеры обобщенных кубических полиномов Бернштейна

Мы рассмотрели алгоритм определения точки, инцидентной треугольной порции поверхности, с заданными барицентрическими координатами на основе повторяющейся линейной интерполяции. Решим эту задачу, используя обобщенные полиномы Бернштейна и их свойства.

Запишем уравнение (10) в виде

.

Таким образом, каждый шаг алгоритма связан с линейной интерполяцией, определяемой формулой

. (12)

Подставляя в уравнение (12) , получим уравнение треугольной порции поверхности Безье, определенной с помощью обобщенных полиномов Бернштейна:

(13)

или

.

Угловые точки порции поверхности задаются векторами , и .

Граничные кривые определяются характеристическими ломаными:

;

;

.

Так же, как и для одномерного случая, перемещение любой из управляющих точек влияет на форму поверхности в окрестности этой точки. Пример сконструированной кубической треугольной порции поверхности показан на рис. 13.13.

Рис. 13.13. Кубическая треугольная порция поверхности Безье и ее характеристический многогранник







Дата добавления: 2015-09-04; просмотров: 1152. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия