Принцип практической невозможности маловероятных событий
При решении многих практических задач приходится иметь дело с событиями, вероятность которых весьма мала, т. е. близка к нулю. Можно ли считать, что маловероятное событие А в единичном испытании не произойдет? Такого заключения сделать нельзя, так как не исключено, хотя и мало вероятно, что событие А наступит. Казалось бы, появление или непоявление маловероятного события в единичном испытании предсказать невозможно. Однако длительный опыт показывает, что маловероятное событие в единичном испытании в подавляющем большинстве случаев не наступает. На основании этого факта принимают следующий «принцип практической невозможности маловероятных событий»: если случайное событие имеет очень малую вероятность, то практически можно считать, что в единичном испытании это событие не наступит. Естественно возникает вопрос: насколько малой должна быть вероятность события, чтобы можно было считать невозможным его появление в одном испытании? На этот вопрос нельзя ответить однозначно. Для задач, различных -по существу, ответы разные. Например, если вероятность того, что парашют при прыжке не раскроется, равна 0,01, то было бы недопустимым применять такие парашюты. Если же вероятность того, что поезд дальнего следования прибудет с опозданием, равна 0,01, то можно практически быть уверенным, что поезд прибудет вовремя. Достаточно малую вероятность, при которой (в данной определенной задаче) событие можно считать драк- Подчеркнем, что рассмотренный здесь принцип позволяет делать предсказания не только о событиях, имеющих малую вероятность, но и о событиях, вероятность которых близка к единице. Действительно, если событие А имеет вероятность, близкую к нулю, то вероятность противоположного события А близка к единице. С другой стороны, непоявление события А означает наступление противоположного события А. Таким образом, из принципа невозможности маловероятных событий вытекает следующее важное для приложений следствие: если случайное событие имеет вероятность, очень близкую к единице, то практически можно считать, что в единичном испытании это событие наступит. Разумеется, и здесь ответ на вопрос о том, какую вероятность считать близкой к единице, зависит от существа задачи. Задачи В денежно-вещевой лотерее на каждые 10 000 билетов разыгрывается 150 вещевых и 50 денежных выигрышей. Чему равна вероятность выигрыша, безразлично денежного илн вещевого, для владельца одного лотерейного билета? Отв. р = 0,02. Вероятность того, что стрелок при одном выстреле выбьет 10 очков, равна 0,1; вероятность выбить 9 очков равна 0,3; вероятность выбить 8 илн меньше очков равна 0,6. Найти вероятность того, что при одном выстреле стрелок выбьет не менее 9 очков. Отв. р = 0,4.
|