Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение функции распределения





Вспомним, что дискретная случайная величина может быть задана' перечнем всех ее возможных значений и их вероятностей. Такой способ задания не является общим: он неприменим, например, для непрерывных случайных величин.

Действительно, рассмотрим случайную величину X, возможные значения которой сплошь заполняют интервал (а, Ь). Можно ли составить перечень всех возможных значений X? Очевидно, что этого сделать нельзя. Этот пример указывает на целесообразность дать общий спо­соб задания любых типов случайных величин. С этой целью и вводят функции распределения вероятностей случайной величины.

Пусть х —действительное число. Вероятность события, состоящего в том, что X примет значение, меньшее х, т. е. вероятность события X < х, обозначим через F (х). Разу­меется, если х изменяется, то, вообще говоря, изменяется и /•’(х), т. е. F (х )—функция от х.

Функцией распределения называют функцию/7 (х), опре­деляющую вероятность того, что случайная величина X в результате испытания примет значение, меньшее х, т. е.

F{x) = P(X <х).

Геометрически это равенство можно истолковать так: F (х) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.

Иногда вместо термина «функция распределения» используют термин «интегральная функция».

Теперь можно дать более точное определение непре­рывной случайной величины: случайную величину назы­вают непрерывной, если ее функция распределения есть непрерывная, кусочно-дифференцируемая функция с не­прерывной производной.







Дата добавления: 2015-09-06; просмотров: 444. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия