Определение функции распределения
Вспомним, что дискретная случайная величина может быть задана' перечнем всех ее возможных значений и их вероятностей. Такой способ задания не является общим: он неприменим, например, для непрерывных случайных величин. Действительно, рассмотрим случайную величину X, возможные значения которой сплошь заполняют интервал (а, Ь). Можно ли составить перечень всех возможных значений X? Очевидно, что этого сделать нельзя. Этот пример указывает на целесообразность дать общий способ задания любых типов случайных величин. С этой целью и вводят функции распределения вероятностей случайной величины. Пусть х —действительное число. Вероятность события, состоящего в том, что X примет значение, меньшее х, т. е. вероятность события X < х, обозначим через F (х). Разумеется, если х изменяется, то, вообще говоря, изменяется и /•’(х), т. е. F (х )—функция от х. Функцией распределения называют функцию/7 (х), определяющую вероятность того, что случайная величина X в результате испытания примет значение, меньшее х, т. е. F{x) = P(X <х). Геометрически это равенство можно истолковать так: F (х) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х. Иногда вместо термина «функция распределения» используют термин «интегральная функция». Теперь можно дать более точное определение непрерывной случайной величины: случайную величину называют непрерывной, если ее функция распределения есть непрерывная, кусочно-дифференцируемая функция с непрерывной производной.
|