Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

НЕПРЕРЫВНОЙ СЛУЧАЙНОЙ ВЕЛИЧИНЫ





Определение плотности распределения

Выше непрерывная случайная величина задава­лась с помощью функции распределения. Этот способ задания не является единственным. Непрерывную слу­чайную величину можно также задать, используя другую функцию, которую называют плотностью распределения или плотностью вероятности (иногда ее называют диф­ференциальной функцией).

Плотностью распределения вероятностей непрерывной случайной величины X называют функцию f (х) — первую производную от функции распределения F (х):

f (х) = Г (х).

Из этого определения следует, что функция распре­деления является первообразной для плотности распре­деления.

Заметим, что для описания распределения вероятно­стей дискретной случайной величины плотность распре­деления неприменима.

Вероятность попадания непрерывной

Случайной величины в заданный интервал

Зная плотность распределения, можно вычислить вероятность того, что непрерывная случайная величина примет значение, принадлежащее заданному интервалу. Вычисление основано на следующей теореме.

Теорема. Вероятность того, что непрерывная случай­ная величина X примет значение, принадлежащее интер­валу (а, Ь), равна определенному интегралу от плотности


распределения, взятому в пределах от а до Ъ:

ь

Р(а < X <b)=^f (х) dx.

а

Доказательство. Используем соотношение (**), (см. гл. X, § 2)

Р(а^Х <b) = F(b) —F (а).







Дата добавления: 2015-09-06; просмотров: 445. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия