Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

В. Закон равномерного распределения вероятностей





При решении задач, которые выдвигает практи­ка, приходится сталкиваться с различными распределе­ниями непрерывных случайных величин. Плотности рас­пределений непрерывных случайных величин называют также законами распределений. Часто встречаются, на­пример, законы равномерного, нормального и показатель­ного распределений. В настоящем параграфе рассматри­вается закон равномерного распределения вероятностей. Нормальному и показательному законам посвящены сле­дующие две главы.

Распределение вероятностей называют равномерным, если на интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение.

Приведем пример равномерно распределенной непре­рывной случайной величины.

Пример. Шк&ла измерительного прибора проградуирована в не­которых единицах. Ошибку при округлении отсчета до ближайшего целого деления можно рассматривать как случайную величину X, которая может принимать с постоянной плотностью вероятности лю­бое значение между двумя соседними целыми делениями. Таким об­разом, X имеет равномерное распределение.

Найдем плотность равномерного распределения f (л:), считая, что все возможные значения случайной величины заключены в интерва­ле (а, Ь), на котором функция f (л:) сохраняет постоянные значения: По условию, X не принимает значений вне интервала (а, Ь), поэтому / (лс) = 0 при х < а и х > Ь.

Найдем постоянную С. Так как все возможные значения слу­чайной величины принадлежат интервалу (а, Ь ), то должно выпол­няться соотношение



5 с*.



Отсюда



С== I/ ^ dx= 1/(6— а).

а







Дата добавления: 2015-09-06; просмотров: 446. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия