Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 1. Найти методом наибольшего правдоподобия оценку параметра А. распределения Пуассона





Рш (X = *,)=-^j-,

где т — число произведенных испытаний, X /—число появлений собы­тия в i-м (i=l, 2 я) опыте (опыт состоит из т испытаний).


Решение. Составим функцию правдоподобия, учитывая, что 0=Х:

L = p (xi; Х)р(х2; к)... р (х„\ X) =

X*» е~х f Xх» е~х Х*л-е~х • е~"Х

лех1 * ха1 ' ’' лг„! jcx!jca!.. x„l '

Найдем логарифмическую функцию правдоподобия:

Jnt = (Sx,) 1пх— пХ —1п (х1,хг!... *„!).

Найдем первую производную по X:

d\nL 2*'

~Ж~~~ X "■;

Напншем уравнение правдоподобия, для чего приравняем пер­вую производную иулю:

(2ж«А)-«=0-

Найдем критическую точку, для чего решим полученное уравне­ние относительно Я,:

X — Xjjti = хв.

Найдем вторую производную по Я,:

d2 \nL 2*' dX2 — X2

Легко видеть, что при Х = ха вторая производная отрицательна; следовательно, Я, = хв— точка максимума и, значит, в качестве оценка наибольшего правдоподобия параметра А. распределения Пуассоиа надо принять выборочную среднюю Х* = хв.

Пример 2. Найти методом наибольшего правдоподобия оценку параметра р биномиального распределения

Рп W =СяР* (1 —р)п~к,

если в п 1 независимых испытаниях событие А появилось х1 = тг раз и в па независимых испытаниях событие А появилось ха = т2 раз.

Решение. Составим функцию правдоподобия, учитывая, что 0 = р:

L = P„t (/пх) Я„, (ma)==C£«C£*pm«+m* (1 -р)[(п‘ +

Найдем логарифмическую функцию правдоподобия:

lnL = ln(C”*C”,) + (mlH-ma) In p + [(niH-na) — (ячН-т*)] In (1—р).

Найдем первую производную по р:

din Lт1 + та (ni + na)— (ff»i + /n2)

dp ~ р 1—р

Напишем уравнение правдоподобия, для чего приравняем первую производную нулю-

m1 + mi (n1-\-ni) — (mi + m2) Q Р 1—Р

Найдем критическую точку, для чего решим полученное урав­нение относительно р:

р = (т1 + т2)1(п1-\-па).

Найдем вторую производную по р:

т1-\-та. (ПхН-Пг) — (mi +»*3)

dpа р5 I" (1—Р)2

Легко убедиться, что при р = (т1-\-та)/(п1-\-па) вторая произ­водная отрицательна; следовательно, P = (»i1H-m2)/(n1-)-n2)—точка максимума и, значит, ее надо принять в качестве оценки наиболь­шего правдоподобия неизвестной вероятности р биномиального рас­пределения:

Р* = ("Ч + «12)/(Л! + пя).

Б. Непрерывные случайные величины. Пусть X — не­прерывная случайная величина, которая в ре­зультате п испытаний приняла значения х ха, ..., хп. Допустим, что вид плотности распределения f (х) задан, но не известен параметр 0, которым определяется эта функция.

Функцией правдоподобия непрерывной случайной вели­чины X называют функцию аргумента 0:

^ (* 1, *2 хп> 0) = / (* i; 6) f (*«; 0)...f (x„; 0),

где xlt xa, ..., x n—фиксированные числа.

Оценку наибольшего правдоподобия неизвестного па­раметра распределения непрерывной случайной величины ищут так же, как в случае дискретной величины.







Дата добавления: 2015-09-06; просмотров: 909. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия