Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Получим





М(Х) = хв.

Математическое ожидание М (X), как видно из соотно­шения

М (Х) = J xf (х; 0) Ле = ф (0),

есть функция от 0, поэтому (*) можно рассматривать как уравнение с одним неизвестным 0. Решив это уравнение относительно параметра 0, тем самым найдем его точеч­ную оценку 0*. которая является функцией от выбороч­ной средней, следовательно, и от вариант выборки:

0* = Ф(*х. *

Пример 1. Найти методом моментов по выборке xlt ха, х„ точечную оценку неизвестного параметра к показательного распреде­ления, плотность распределения которого f(x) = \e-ljc (х^яО).

Решение. Приравняем начальный теоретический момент пер­вого порядка начальному эмпирическому моменту первого порядка:

v1 = Af1. Учитывая, что v1 = Af(X), Mi=xB, получим

М(Х)=хв.

Приняв во внимание, что математическое ожидание показательного распределения равно 1/Л (см. гл. XIII, § 3), инеем


k=l/xa.

Итак, искомая точечная оценка параметра К показательного рас­пределения равна величине, обратной выборочной средней:

Б. Оценка двух параметров. Пусть задан вид плотности распределения f (х\ 01( 0Я), определяемой неизвестными параметрами 0А и 0Я. Для отыскания двух параметров необходимы два уравнения относительно этих параметров. Следуя методу моментов, приравняем, например, началь­ный теоретический момент первого порядка начальному эмпирическому моменту первого порядка и центральный теоретический момент второго порядка центральному эм­пирическому моменту второго порядка:

V1 = Mi, |Аа = /Ля.

Учитывая, что vt = М (X), ця = D (X) (см. гл. VIII, § 10), Ml = xa, m2 = DB (см. гл. XVII, § 2), получим

Математическое ожидание и дисперсия есть функции от 0j н 0Я, поэтому (**) можно рассматривать как систему двух уравнений с двумя неизвестными и 0Я. Решив эту систему относительно неизвестных параметров, тем самым получим их точечные оценки 0J и 0J. Эти оценки являются функциями от вариант выборки:

=^(*1, хя х„),

= "Ф* (■*!» • • • * Хп)ш

Пример 2. Найти методом моментов по выборке хи ха,..хп точечные оценки неизвестных параметров о и а нормального рас­пределения

Решение. Приравняем начальные теоретические и эмпиричес­кие моменты первого порядка, а также центральные и эмпирические моменты второго порядка:

vi = Af1, 14=m,.

Учитывая, что Vi = Af(X), (1*=1)(Х), Мхл, получим

М(Х)=хш, D(X)=DM.

Приняв во внимание, что математическое ожидание нормального рас­пределения равно параметру а, дисперсия равна аа (см. гл. XII, § 2), имеем:

а = хв, о 2 = £>„.

Итак, искомые точечные оценки параметров нормального рас­пределения:

а*=1в> о* = VDB.







Дата добавления: 2015-09-06; просмотров: 499. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия