Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Приклад. Підприємство, що займається торгово-закупівельною діяльністю, спеці­алізується на постачанні мінеральної води





Підприємство, що займається торгово-закупівельною діяльністю, спеці­алізується на постачанні мінеральної води. Щотижня в магазин №1 підприємст­во постачає 500 пляшок «Миргородської», 250 пляшок «Дніпропетровської» і 100 пляшок «Боржомі»; у магазин №2 постачає 100 пляшок «Миргородської», 500 пляшок «Дніпропетровської» і 200 пляшок «Боржомі»; у магазин №3 по­стачає 250 пляшок «Миргородської», 250 пляшок «Дніпропетровської» і 500 пляшок «Боржомі». За цими даними скласти матрицю поставок.

А Опишемо зміст цієї задачі у вигляді матриці порядку 3Х3:

(500 100 250л А = 250 500 250 ^100 200 500у

Тут елемент ау означає, що магазин у одержує а пляшок і-ої мінеральної води в тиждень. Наприклад, а32 =200 означає, що магазин №2 одержав 200 пля­шок «Дніпропетровської» мінеральної води. ►

а„

2.2. Види матриць

Якщо в матриці число рядків дорівнює числу стовпців, то матриця нази­вається квадратною, до того ж число її рядків або стовпців називається поряд­ком матриці. У наведених вище прикладах квадратними є друга матриця - її порядок дорівнює трьом, і третя матриця - її порядок 1.

Матриця, у якій число рядків не дорівнює числу стовпців, називається прямокутною. У прикладах це перша матриця й четверта.

Розрізняються також матриці, що мають тільки один рядок або один стовпець.

Матриця, у якої всього один рядок А = (а11 а12... а1п), називається

матрицею-рядком (або рядковою), а матриця, у якої усього один стовпець, ма- трицею-стовпцем.

Матриця, усі елементи якої дорівнюють нулю, називається нульовою й позначається (0), або просто 0. Наприклад,

0 = (0 0... 0), 0 = (0 0).

Головною діагоналлю квадратної матриці назвемо діагональ, що йде з лі­вого верхнього в правий нижній кут.

а з -о 0 2 -2 4 1 3

ч — У

Квадратна матриця, у якої всі елементи, що лежать нижче головної діа­гоналі, дорівнюють нулю, називається трикутною матрицею.


а
а
11 0
 
13 23 зз У
а
 
0 0

 

 


1 0Ї,0 0,

Квадратна матриця, у якої всі елементи, крім елементів, що розташовані на головній діагоналі, дорівнюють нулю, називається діагональною матрицею. 00 1 /1 0\ або І ^ лі. Зазначимо, що деякі елементи головної
а
11 0
Наприклад,
 
а
 
0 0
а

V " ^ ^зз у діагоналі можуть дорівнювати нулю.

Діагональна матриця, у якої всі діагональні елементи дорівнюють оди­ниці, називається одиничною матрицею й позначається буквою Е. Наприклад,

'1 0 0Л


одинична матриця з-го порядку має вигляд Е
0 0
1 0
0 1

 

 


2.3. Операції над матрицями та їхні основні властивості

Рівність матриць. Дві матриці А і В називаються рівними, якщо ці мат­риці мають однакове число рядків і стовпців і їхні відповідні елементи дорів-


Ьїї ь
а
нюють ау = Ьу. Наприклад, якщо А
і В
, то А=В тільки
її
12 22 У
ї2 ч '22 У
а,
 

тоді, коли аїї = Ьїї, аї2 = Ьї2, а2ї = Ь2ї і а22 = Ь

Транспонування. Розглянемо довільну матрицю А, що має т рядків і п стовпців. їй можна поставити у відповідність таку матрицю В з п рядків і т стовпців, що кожен рядок є стовпцем матриці А із тим же номером (отже, ко­жен стовпець є рядком матриці А із тим же номером). Отже, якщо

  ^ аїї аї2 •• аїп "     ґ аїї а а, ^ тї
А = а а22. •• а2 п , то В = аї2 а22. .. а 2 т2
  V ат ї а 2 т 2 . а тп У     V ап ї а2 п .. а, тп У

 

Таку матрицю В називають транспонованою матрицею А, а перетворен­ня від А до В транспонуванням.

Таким чином, транспонування - це зміна ролями рядків і стовпців мат­риці. Матрицю, транспоновану до матриці А, зазвичай позначають А.

Зв'язок між матрицею А та її транспонованою можна записати у вигляді:

АТ = А... У ]

Операція транспонування матриць має такі властивості:

a) Т)Т = А

b) (А+В)Т = АТТ

c) (АВ)Т = ВТАТ

ф для симетричної матриці А = А.







Дата добавления: 2015-09-06; просмотров: 468. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия