Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Декартова прямоугольная система координат в пространстве.





Три взаимно перпендикулярные оси в пространстве (координатные оси) с общим началом О и одинаковой масштабной единицей образуют декартову прямоугольную (кратко - прямоугольную) систему координат в пространстве. Оси упорядочены, т.е. указано, какая из осей считается первой (она называется осью абсцисс и обозначается Ох), какая - второй (ось ординат Оу) и какая -третьей (ось аппликат Oz).

Различают правую и левую системы декартовых прямоугольных координат (рис. 36, соответственно а, б). В этой книге принята правая система координат (будем называть ее основной.

Орты осей Ox, Oy, Oz обозначают соответственно . Так как векторы компланарны, то они образуют базис (см.п. 6), который называется декартовым прямоугольным базисом.

В силу результатов п. 6 каждый вектор может быть, и притом единственным способом, разложен по декартовому прямоугольному базису , т.е. для каждого вектора найдется, и притом единственная, тройка чисел , такая что справедливо равенство

Числа называются декартовыми прямоугольными (или прямоугольными) координатами вектора .

 

Рис.36

Запись () означает, что вектор : имеет декартовы прямоугольные координаты

Выясним геометрический смысл чисел . Используя теоремы 2 и 1 о проекциях (см. п. 7), имеем

Аналогично .

Следовательно, числа в формуле (7) являются проекциями вектора на координатные оси Ox, Oy,Oz соответственно.

Если М - произвольная точка в пространстве, то радиусом-вектором точки М назовем вектор , имеющий своим началом

начало О заданной системы координат, а концом эту точку.

Определение. Декартовыми прямоугольными координатами точки М называются проекции ее радиуса-вектора на соответствующие координатные оси; проекция на первую координатную ось называется абсциссой точки М, на вторую -, на третью - аппликатой:

x = , у = , z = . Символ М(х; у; z) означает, что точка М имеет координаты х, у, z.

Координатные плоскости (плоскости, проходящие через пары координатных осей) делят все пространство на восемь частей, называемых октантами, которые нумеруются следующим образом: октант, лежащий над первой четвертью плоскости хОу, - I; лежащий под ней - V; соответственно октанты, лежащие над и под второй четвертью плоскости хОу, - II и VI; над и под третьей четвертью - III и VII; над и под четвертой четвертью - IV и VIII.

Каждому октанту соответствует определенная комбинация знаков координат:

Отметим, что каждой точке пространства соответствует одна упорядоченная тройка действительных чисел (х; у; z) (ее координат). Верно и обратное: каждой упорядоченной тройке действительных чисел (х; у; z) соответствует одна точка пространства. Это означает, что в пространстве положение произвольной точки М полностью определяется ее координатами х; у; z. имеем = (Если точка М лежит в плоскости хОу, то = )

Пусть заданы две точки М11 ; у1; z1) и М22; у2; z2).

Рассмотрим вектор .

Имеем = (рис. 37). Отсюда в силу теоремы 2 (см. п.6) получаем 2- х1 ; у2- у1; z2- z1).

Итак, чтобы найти координаты некоторого вектора, достаточно из координат его конца вычесть одноименные координаты его начала.

Пусть два ненулевых вектора

коллинеарны. В этом случае (см. п. 2) = ( - скаляр), что в силу следствия 2 из п. 7 равносильно трем равенствам

Это есть условие коллинеарности векторов.

Таким образом, векторы коллинеарны тогда и только тогда, когда их одноименные координаты пропорциональны.

Примечание. В равенстве (8) некоторые из знаменателей могут оказаться равными нулю. Напомним, что всякую пропорцию

понимаем в смысле равенства ad = be.

Так, например, равенства

Означают, что

.







Дата добавления: 2015-09-07; просмотров: 1167. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия