Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скалярное произведение двух векторов и его основные свойства.





Определение. Скалярным произведением двух векторов называется число, равное произведению модулей этих векторов на косинус угла между ними.

Скалярное произведение векторов и обозначается символом или ( , ). Если угол между векторами и равен , то

= | | | | соs

Через обозначим проекцию вектора на ось с направлением вектора . Так как | | соs = и | | соs = (см. § 2.1, п. 7), можно записать

=| |; = | | ,

т.е. скалярное произведение двух векторов равно модулю одного из них, умноженному на проекцию другого на ось с направлением

Раскроем физический смысл скалярного произведения. Если вектор изображает силу, точка приложения которой перемещается из начала в конец вектора , то работа А указанной силы определяется равенством

A=| | | | cos ,

т.е. равна скалярному произведению векторов и .

Скалярное произведение обладает следующими основными свойствами

1) = (переместительное свойство);

2) = = | |2(3)

( 2 называется скалярным квадратом вектора);

3)( + ) = + (распределительное свойство);(4)

4) ( ) = ( )(сочетательное свойство относительно числового множителя).

Докажем, например, свойство 3. На основании формулы (2) и свойства проекций (см. § 2.1, (5)) имеем

( + ) =| | ( + )=| |( + = | +| | = + = + ,

т.е. получаем равенство (4).

Примечание. Из свойств 1, 3, 4 скалярного умножения и свойств линейных операций над векторами (см. § 2.1, п. 2) следует, что векторы можно перемножать скалярно как многочлены.

Из равенства (1) следует, что косинус угла между двумя ненулевыми векторами и равен

Из формулы (5) получаем, что два вектора и ) перпендикулярны (ортогональны), = тогда и только тогда, когда

= 0. (6)

Это утверждение справедливо также и в том случае, когда хотя бы один из векторов или нулевой (нулевой вектор имеет неопределенное направление и его можно считать ортогональным любому вектору).

 

 







Дата добавления: 2015-09-07; просмотров: 458. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия