Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Смешанное произведение трех векторов и его основные свойства.





Пусть даны три вектора , и . Представим себе, что вектор умножается векторно на и полученный вектор х умножается скалярно на вектор , тем самым определяется число ( х ) . Оно называется или смешанным произведением трех векторов , и .

Для краткости смешанное произведение ( х ) будем обозначать или ( ).

Выясним геометрический смысл смешанного произведения . Пусть рассматриваемые векторы и некомпланарны. Построим параллелепипед на векторах , и как на ребрах.

Векторное произведение x есть вектор ( = ), численно равный площади параллелограмма OADB (основание построенного параллелепипеда), построенного на векторах и и направленный перпендикулярно к плоскости параллелограмма (рис. 41).

Скалярное произведение ( x ) = есть произведение модуля вектора и проекции вектора на (см. п. 1, (2)).

Высота построенного параллелепипеда есть абсолютная величина этой проекции.

Следовательно, произведение | | по абсолютной величине равно произведению площади основания параллелепипеда на его высоту, т.е. объему параллелепипеда, построенного на векторах , и .

Рис.42

При этом важно отметить, что скалярное произведение дает объем параллелепипеда иногда с положительным, а иногда с отрицательным знаком. Положительный знак получается, если угол между векторами и острый; отрицательный - если тупой. При остром угле между и вектор расположен по ту же сторону плоскости OADB, что и вектор и, следовательно, из конца вектора вращение от к будет видно так же, как и из конца вектора , т.е. в положительном направлении (против часовой стрелки).

При тупом угле между вектор расположен по другую сторону плоскости OADB, чем вектор , и, следовательно, из конца вектора вращение от к будет видно в отрицательном направлении (по часовой стрелке). Иными словами, произведение положительно, если векторы , и образуют систему, одноименную с основной Oxyz (взаимно расположены так же, как оси Ox, Oy, Oz), и оно отрицательно, если векторы , образуют систему, разноименную с основной.

Таким образом, смешанное произведение есть число, абсолютная величина которого выражает объем параллелепипеда, построенного на векторах , как на ребрах.

Знак произведения положителен, если векторы , , образуют систему, одноименную с основной, и отрицателен в противном.

Отсюда следует, что абсолютная величина произведения =( х ) останется той же, в каком бы порядке мы ни брали сомножители , , . Что касается знака, то он будет в одних случаях положительным, в других - отрицательным; это зависит от того, образуют ли наши три вектора, взятые в определенном порядке, систему, одноименную с основной, или нет. Заметим, что у нас оси координат расположены так, что они следуют одна за другой против часовой стрелки, если смотреть во внутреннюю часть (рис. 42). Порядок следования не нарушается, если мы начнем обход со второй оси или с третьей, лишь бы он совершался в том же направлении, т.е. против часовой стрелки. При этом множители переставляются в круговом порядке (циклически). Таким образом, получаем следующее свойство:

Смешанное произведение не меняется при круговой (циклической) перестановке его сомножителей. Перестановка двух соседних сомножителей меняет знак произведения

= = =-( )=-( )=-( ).

Наконец, из геометрического смысла смешанного произведения непосредственно следует следующее утверждение.

Необходимым и достаточным условием компланарности векторов , , является равенство нулю их смешанного произведения:

=0 (14)

 







Дата добавления: 2015-09-07; просмотров: 396. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия