Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Базис на плоскости и в пространстве.





Определение. Базисом на плоскости называются два любых линейно независимых вектора.

Из теоремы 2 (см. п. 4) следует, что два любых неколлинеарных вектора образуют базис. Пусть любой вектор на плоскости, а векторы и образуют базис. Так как на плоскости всякие три вектора линейно зависимы, то вектор линейно выражается через векторы базиса, т. е. выполняется соотношение

.

Если вектор представлен в виде (3), то говорят, что он разложен по базису образованному векторами и . Числа и называют координатами вектора на плоскости относительно базиса и

1. Разложение вектора по и является единственным

Доказательство. Допустим, что наряду с разложением (3) имеет место разложение

Покажем, что в этом случае Действительно, вычитая равенство (4) из равенства (3), получаем соотношение

(Возможность почленного вычитания равенств (4) и (3) и производимой группировки членов вытекает из свойств линейных операций над векторами (см. п. 2).) Так как векторы базиса , линейно независимы, то и . Отсюда , т.е. разложение вектора по базису , единственно.

Определение. Базисом в пространстве называются три любых линейно независимых вектора.

Из теоремы 2 (см. п. 5) следует, что три любых некомпланарных вектора образуют базис. Как и в случае плоскости, устанавливается, что любой вектор разлагается по векторам , и

причем это разложение единственное.

Числа , , называют координатами вектора в пространстве относительно базиса , и .

Основное значение базиса состоит в том, что линейные операции над векторами при задании базиса становятся обычными линейными операциями над числами - координатами этих векторов.

Теорема. При сложении двух_векторов и их координаты (относительно любого базиса и или любого базиса , и ) складываются. При умножении вектора на любое число, а все его координаты умножаются на это число.

Доказательство. Пусть, например,

.

Тогда в силу свойств линейных операций (см. п. 2)

В силу единственности разложения по базису , , теорема для этого базиса доказана.

 







Дата добавления: 2015-09-07; просмотров: 469. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия