Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Векторное произведение двух векторов и его основные свойства.





Определение. Векторным произведением двух векторов и называется новый вектор , модуль которого равен площади параллелограмма, построенного на векторах и , приведенных к общему началу, и который перпендикулярен к перемножаемым векторам (иначе говоря, перпендикулярен к плоскости построенного на них параллелограмма) и направлен в такую сторону, чтобы кратчайший поворот от к вокруг полученного вектора представлялся происходящим против часовой стрелки, если смотреть из конца вектора (рис. 40).

Если векторы и коллинеарны, то их векторное произведение считается равным нулевому вектору. Из этого определения следует, что


| | = | | | | sin
,

где - угол между векторами и (0 ). Векторное произведение векторов и обозначается символом

х или [ ] или [ , ].

Выясним физический смысл векторного произведения. Если вектор изображает приложенную в некоторой точке М с илу, а вектор идет из некоторой точки О в точку М, то вектор = [ ] представляет собой момент силы относительно точки О.

Свойства векторного произведения

1. При перестановке сомножителей векторное произведение меняет знак, т.е.

х = -( x ).

2.

( = х( )= ( х ), где - скаляр.

3. Векторное произведение подчиняется распределительному закону, т.е.

( + ) x = x + x .

4. Если векторное произведение двух векторов равно нулевому вектору, то либо равен нулевому вектору хотя бы один из перемножаемых векторов (тривиальный случай), либо равен нулю синус угла между ними, т.е. векторы коллинеарны.

Обратно, если два ненулевых вектора коллинеарны, то их векторное произведение равно нулевому вектору.

Таким образом, для того чтобы два ненулевых вектора и были коллинеарны, необходимо и достаточно, чтобы их векторное произведение равнялось нулевому вектору.

Отсюда, в частности, следует, что векторное произведение вектора на самого себя равно нулевому вектору:

х = 0

( х еще называют векторным квадратом вектора .

 







Дата добавления: 2015-09-07; просмотров: 372. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия