Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Собственные вектора и собственные значения





Определение 2. Ненулевой вектор из одномерного подпространства, инвариантного относительно , называется собственным вектором 2) оператора . Таким образом, собственный вектор оператора удовлетворяет условию . При этом скаляр называется собственным значением 3) оператора .

Пример 1. Пусть — двумерное векторное пространство над полем действительных чисел , и — линейный оператор на , имеющий в некотором базисе матрицу . Тогда вектор является собственным вектором оператора с собственным значением , а вектор — собственным вектором с собственным значением . В этом можно удостовериться, решив уравнения,

и .

Определение 3. Подпространство4) называется собственным подпространством 5) оператора . Размерность называется геометрической кратностью 6) собственного значения .

Определение 4. Множество всех собственных значений линейного оператора называется спектром 7) этого оператора и обозначается символом . Точка спектра называется простой 8), если ей соответствует геометрическая кратность 1. Спектр называется простым 9), если каждая точка спектра проста.

Предложение 1. Собственные векторы, принадлежащие различным собственным значениям, линейно независимы. Сумма является прямой.

Пример 2. Опишем спектр линейного оператора на векторном пространстве из примера 1. Так как на двумерном векторном пространстве любой линейный оператор имеет не более двух собственных значений10), то из примера 1 видно, что и образуют простой спектр этого оператора.







Дата добавления: 2015-09-07; просмотров: 545. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия