Адіабатичний процес. Рівняння Пуасона
Адіабатичним (або адіабатним) називається процес, що протікає без теплообміну з навколишнім середовищем. Умова такого процесу: (або Q= 0). Застосовуючи до адіабатичного процесу 1-й принцип термодинаміки (2.29), маємо , (2.39) тобто при адіабатичному розширенні газ виконує роботу за рахунок запасу його внутрішньої енергії. При цьому ідеальний газ охолоджується. Дійсно, взявши до уваги вираз для внутрішньої енергії (2.37), маємо . (2.40) Звідси бачимо, що при розширенні газу (A>0) приріст температури , в чому і треба було переконатися. Описане явище – спосіб отримання низьких температур. Вираз (2.40) дозволяє розрахувати роботу ідеального газу при адіабатичному процесі. Якщо використати рівняння Менделєєва-Клапейрона, то цю роботу можна виразити через параметри p та V. Щоб здійснити адіабатичний процес, треба надійно теплоізолювати систему або здійснювати його дуже швидко, щоб теплообмін практично не встигав відбутися. Другий з цих варіантів зустрічається у природі. Наприклад, величезні маси атмосферного повітря, нагріваючись біля поверхні Землі, піднімаються вгору, потрапляють в області нижчих тисків і розширюються. Цей процес адіабатичний, бо через погану теплопровідність повітря теплообміном при цьому можна знехтувати. Виконуючи роботу розширення проти зовнішнього тиску, повітря охолоджується, а водяна пара перетворюється в насичену й конденсується (хмари). Згущення і розрідження, що утворюються у звуковій хвилі в газах, – це також по суті процеси адіабатичного стиснення і розширення газу. Оскільки швидкість поширення звуку немала (340м/с при кімнатних температурах), процеси тут відбуваються так швидко, що за цей короткий час теплообміном можна знехтувати. Приступимо тепер до виведення рівняння адіабати. За основу беремо вираз 1-го принципу термодинаміки для цього процесу (в диференціальній формі (2.30)): . (2.41) Розпишемо ліву частину цього рівняння. Елементарну роботу розрахуємо на основі формули (2.25), причому тиск підставимо, взявши його з рівняння Менделєєва-Клапейрона (2.3): . Елементарний приріст внутрішньої енергії dU запишемо, продиференціювавши вираз (2.37): . Тепер замість (2.41) маємо . Поділимо далі останнє рівняння на добуток і одержимо . (2.42) Коефіцієнт запишемо, виразивши газову сталу через різницю з рівняння Майєра (2.38): , де введено позначення . (2.43) Тепер співвідношення (2.42) приймає вигляд . Оскільки , то наше рівняння запишеться у формі або . Звідси випливає, що Або . (2.44) Співвідношення (2.44) є рівнянням адіабати або рівнянням Пуасона. Параметр , введений вище, називається показником адіабати або коефіцієнтом Пуасона. Для повітря, наприклад, (в сухому повітрі 99% двохатомних молекул!). В загальному випадку , оскільки . Визначаючи абсолютну температуру з рівняння Менделєєва-Клапейрона і підставляючи одержаний вираз у співвідношення (2.44), одержимо іншу форму запису рівняння Пуасона: . (2.45) Згадаємо, що рівняння ізотерми . Порівняння двох останніх виразів приводить до висновку, що адіабата графічно “крутіша” від ізотерми (див. рис.2.9). Якщо з рівняння Менделєєва-Клапейрона або з рівняння (2.45) визначити об’єм V і підставити одержаний вираз у (2.44), то матимемо третю форму запису рівняння Пуасона . (2.46) Зауваження: 1) рівняння Пуасона (2.44–46) правильні за умови, що кількість газу (чи його маса) незмінні під час процесу; 2) величини “const” у всіх виписаних рівняннях різні.
|