Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тема 1. Линейные пространства





Множество L называется линейным пространством, если в L введены операции сложения элементов и умножения элемента на число, обладающие следующими свойствами, которые называются аксиомами линейного пространства:

1.1. 1.2.

1.3. ; 1.4. ;

2.1. ; 2.2. ;

2.3. ; 2.4. .

Задача 1. Проверить, что множество всех матриц размера относительно операций сложения матриц и умножения матрицы на число является линейным пространством.

Решение. При сложении матриц складываются элементы матрицы, стоящие на одинаковых местах, а при умножении матрицы на число все матричные элементы умножаются на это число. Таким образом, на каждом месте матрицы выполняются линейные операции с действительными числами. На множестве действительных чисел аксиомы линейного пространства, очевидно, выполнены, поэтому они выполнены и на множестве матриц.

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Проверить, что следующие множества являются линейными пространствами.

1.1. Множества геометрических векторов на прямой, плоскости и в пространстве соответственно (линейные операции над геометрическими векторами определены по обычным правилам).

1.2. Множество упорядоченных наборов чисел . Набор называется арифметическим вектором, а числа – его координатами. При сложении векторов складываются их координаты, а при умножении вектора на число каждая координата умножается на это число. Множество называется арифметическим или координатным - мерным пространством.

1.3. Множество непрерывных на отрезке функцийс обычными операциями сложения функций и умножения их на числа.

1.4. Множество многочленов степени не выше от одной переменной с обычными операциями сложения многочленов и умножения их на числа.

Указание. Проверить выполнение аксиом линейного пространства.







Дата добавления: 2015-09-07; просмотров: 784. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия