Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Линейная зависимость и независимость векторов





Пусть - система векторов и - произвольные числа.

Вектор называется линейной комбинацией векторов с коэффициентами . Векторы называются линейно независимыми, если из равенства нулю их линейной комбинации следует, что все коэффициенты комбинации равны нулю .

Система векторов линейно зависима, когда хотя бы один из векторов системы является линейной комбинацией других.

Задача 4. Доказать, что линейно независимая система не содержит двух пропорциональных векторов.

Решение. Пусть в линейно независимой системе векторов , например, векторы пропорциональны. Это значит, что существует число не равное нулю, такое, что . Тогда линейная комбинация равна нулю, причем не все коэффициенты указанной комбинации равны нулю, а значит, система векторов является линейно зависимой. Следовательно, сделанное предположение неверно.

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Доказать.

4.1. Линейно независимая система не содержит нулевого вектора.

4.2. Линейно независимая система не содержит равных векторов.

4.3. Линейно независимая система не содержит пропорциональных векторов.

4.4. Любая подсистема линейно независимой системы векторов независима.

Вопрос о линейной зависимости векторов пространства сводится к вопросу о существовании ненулевого решения однородной системы уравнений, коэффициентами которой являются координаты векторов .

Задача 5(1). Выяснить, является ли линейно независимой система векторов

.

Решение. Пусть линейная комбинация равна нулю. Записав это равенство в координатах, получим следующую систему уравнений:

.

Такая система уравнений называется треугольной. Она имеет единственное решение . Следовательно, векторы линейно независимы.

Задача 5(2). Выяснить, является ли линейно независимой система векторов

.

Решение. Векторы линейно независимы (см. задачу 5(1)). Докажем, что вектор является линейной комбинацией векторов . Коэффициенты разложения по векторам определяются из системы уравнений

.

Так как эта система треугольная, то она имеет единственное решение. Следовательно, система векторов линейно зависима.

Замечание. Матрицы, такие как в задаче 5(1), называются треугольными (верхними треугольными), а в задаче 5(2) – ступенчато-треугольными.

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Выяснить, являются ли линейно независимыми следующие системы векторов

5.1. . 5.2. .

5.3. . 5.4. .







Дата добавления: 2015-09-07; просмотров: 1198. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия