Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Подпространства





Подмножество называется подпространством линейного пространства , если оно само является линейным пространством.

Подмножество только тогда является подпространством, когда оно замкнуто относительно линейных операций, т.е. из условия следует, что и .

Задача 2. Является ли линейным подпространством множество всех векторов плоскости, концы которых лежат на данной прямой (начала векторов, по умолчанию, в начале координат).

Решение. Если прямая не проходит через начало координат, то она не содержит нулевого вектора и, следовательно, не является подпространством.

В противном случае векторы, лежащие на этой прямой, образуют подпространство, т.к. это множество замкнуто относительно линейных операций.

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Выяснить, какие из следующих множеств геометрических векторов являются линейными подпространствами.

2.1. Все векторы плоскости, которые лежат на оси .

2.2. Все векторы плоскости, каждый из которых лежит на одной из осей координат или .

2.3. Все векторы плоскости, начала и концы которых лежат на данной прямой.

2.4. Все векторы плоскости, концы которых не лежат на данной прямой.

2.5. Все векторы плоскости, концы которых лежат в первой или третьей четвертисистемы координат.

2.6. Все векторы пространства, концы которых лежат на данной плоскости.

2.7. Все векторы пространства, концы которых не лежат на данной плоскости.

Задача 3. Является ли множество многочленов, степени которых равны точно , линейным подпространством?

Решение. Множество многочленов, степени которых равны точно , не образует подпространство, т.к. при сложении многочленов степени может получиться многочлен меньшей степени.

З а д а ч и д л я с а м о с т о я т е л ь н о г о р е ш е н и я

Выяснить, какие из следующих подмножеств линейного пространства являются линейными подпространствами.

3.1. Множество всех векторов пространства ,у которых координаты − целые числа.

3.2. Множество всех векторов пространства , у которых координаты удовлетворяют уравнению .

3.3. Множество всех векторов пространства , у которых координаты удовлетворяют уравнению .

3.4. Множество всех векторов пространства , являющихся линейными комбинациями данных векторов .

3.5. Множество всех сходящихся последовательностей.

3.6. Множество всех расходящихся последовательностей.

3.7. Множество матриц вида , где .

3.8. Множество функций вида , где .

3.9. Множество многочленов вида , где .

3.10. Множество функций вида , где .







Дата добавления: 2015-09-07; просмотров: 4379. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия