Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дополнение системы векторов до ортогонального базиса





Пусть в евклидовом пространстве :

, (1.7)

есть ортогональная система векторов: , , .

Систему векторов (1.7) можно дополнить до ортогонального базиса

.

Вектор подбирается так, чтобы он был ортогонален векторам . При этом необходимо решить систему

, , …, , (1.8)

содержащую -уравнений () с -неизвестными . Из общего решения этой системы необходимо выделить нетривиальное частное решение, которое определит координаты вектора .

Вектор подбирается так, чтобы он был ортогонален векторам . При этом необходимо решить систему

, , …, , . (1.9)

Система (1.9) будет содержать ( +1)-уравнение (если ) с -неизвестными . Из общего решения этой системы необходимо выделить нетривиальное частное решение, определяющее координаты вектора . И так далее. В итоге получим систему ортогональных векторов

,

являющуюся ортогональным базисом в пространстве .

Задание 9. Проверить ортогональность векторов , пространства и дополнить эти векторы до ортогонального базиса.


9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

9.8.

9.9.

9.10.

 

9.11.

9.12.

9.13.

9.14.

9.15.

9.16.

9.17.

9.18.

9.19.

9.20.


Задание 10. Подпространство линейного пространства задано однородной системой линейных алгебраических уравнений (ОСЛАУ). Найти ортогональную проекцию вектора на подпространство и его ортогональную составляющую .

Алгоритм решения задания следующий.

1. Находим общее решение ОСЛАУ и фундаментальную систему решений (базис пространства решений ОСЛАУ).

2. Проверяем ортогональность векторов . Если векторы не ортогональны, то проводим процесс ортогонализации Шмидта, получаем систему ортонормированных векторов :

3. Ортогональную проекцию – вектор составляем по правилу

,

где , , …., . Проверяем принадлежность составленного вектора пространству .

4. Ортогональную составляющую – вектор составляем как

.

Ортогональность векторов , проверяем условием .

10.1. 10.2.
10.3. 10.4.
10.5. 10.6.
10.7. 10.8.
10.9. 10.10.
10.11. 10.12.
10.13. 10.14.
10.15. 10.16.
10.17. 10.18.
10.19. 10.20.

Задание 11. Найти базис ортогонального дополнения линейного подпространства для соответствующего линейного подпространства решений ОСЛАУ задания 3. Написать ОСЛАУ, соответствующую подпространству .








Дата добавления: 2015-09-07; просмотров: 9522. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия