Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дополнение системы векторов до ортогонального базиса




Пусть в евклидовом пространстве :

, (1.7)

есть ортогональная система векторов: , , .

Систему векторов (1.7) можно дополнить до ортогонального базиса

.

Вектор подбирается так, чтобы он был ортогонален векторам . При этом необходимо решить систему

, , …, , (1.8)

содержащую -уравнений ( ) с -неизвестными . Из общего решения этой системы необходимо выделить нетривиальное частное решение, которое определит координаты вектора .

Вектор подбирается так, чтобы он был ортогонален векторам . При этом необходимо решить систему

, , …, , . (1.9)

Система (1.9) будет содержать ( +1)-уравнение (если ) с -неизвестными . Из общего решения этой системы необходимо выделить нетривиальное частное решение, определяющее координаты вектора . И так далее. В итоге получим систему ортогональных векторов

,

являющуюся ортогональным базисом в пространстве .

Задание 9. Проверить ортогональность векторов , пространства и дополнить эти векторы до ортогонального базиса.


9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

9.8.

9.9.

9.10.

 

9.11.

9.12.

9.13.

9.14.

9.15.

9.16.

9.17.

9.18.

9.19.

9.20.


Задание 10. Подпространство линейного пространства задано однородной системой линейных алгебраических уравнений (ОСЛАУ). Найти ортогональную проекцию вектора на подпространство и его ортогональную составляющую .

Алгоритм решения задания следующий.

1. Находим общее решение ОСЛАУ и фундаментальную систему решений (базис пространства решений ОСЛАУ).

2. Проверяем ортогональность векторов . Если векторы не ортогональны, то проводим процесс ортогонализации Шмидта, получаем систему ортонормированных векторов :

3. Ортогональную проекцию – вектор составляем по правилу

,

где , , …., . Проверяем принадлежность составленного вектора пространству .

4. Ортогональную составляющую – вектор составляем как

.

Ортогональность векторов , проверяем условием .

10.1. 10.2.
10.3. 10.4.
10.5. 10.6.
10.7. 10.8.
10.9. 10.10.
10.11. 10.12.
10.13. 10.14.
10.15. 10.16.
10.17. 10.18.
10.19. 10.20.

Задание 11. Найти базис ортогонального дополнения линейного подпространства для соответствующего линейного подпространства решений ОСЛАУ задания 3. Написать ОСЛАУ, соответствующую подпространству .







Дата добавления: 2015-09-07; просмотров: 3241. Нарушение авторских прав


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2019 год . (0.003 сек.) русская версия | украинская версия