Студопедия — Дополнение системы векторов до ортогонального базиса
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дополнение системы векторов до ортогонального базиса






Пусть в евклидовом пространстве :

, (1.7)

есть ортогональная система векторов: , , .

Систему векторов (1.7) можно дополнить до ортогонального базиса

.

Вектор подбирается так, чтобы он был ортогонален векторам . При этом необходимо решить систему

, , …, , (1.8)

содержащую -уравнений () с -неизвестными . Из общего решения этой системы необходимо выделить нетривиальное частное решение, которое определит координаты вектора .

Вектор подбирается так, чтобы он был ортогонален векторам . При этом необходимо решить систему

, , …, , . (1.9)

Система (1.9) будет содержать ( +1)-уравнение (если ) с -неизвестными . Из общего решения этой системы необходимо выделить нетривиальное частное решение, определяющее координаты вектора . И так далее. В итоге получим систему ортогональных векторов

,

являющуюся ортогональным базисом в пространстве .

Задание 9. Проверить ортогональность векторов , пространства и дополнить эти векторы до ортогонального базиса.


9.1.

9.2.

9.3.

9.4.

9.5.

9.6.

9.7.

9.8.

9.9.

9.10.

 

9.11.

9.12.

9.13.

9.14.

9.15.

9.16.

9.17.

9.18.

9.19.

9.20.


Задание 10. Подпространство линейного пространства задано однородной системой линейных алгебраических уравнений (ОСЛАУ). Найти ортогональную проекцию вектора на подпространство и его ортогональную составляющую .

Алгоритм решения задания следующий.

1. Находим общее решение ОСЛАУ и фундаментальную систему решений (базис пространства решений ОСЛАУ).

2. Проверяем ортогональность векторов . Если векторы не ортогональны, то проводим процесс ортогонализации Шмидта, получаем систему ортонормированных векторов :

3. Ортогональную проекцию – вектор составляем по правилу

,

где , , …., . Проверяем принадлежность составленного вектора пространству .

4. Ортогональную составляющую – вектор составляем как

.

Ортогональность векторов , проверяем условием .

10.1. 10.2.
10.3. 10.4.
10.5. 10.6.
10.7. 10.8.
10.9. 10.10.
10.11. 10.12.
10.13. 10.14.
10.15. 10.16.
10.17. 10.18.
10.19. 10.20.

Задание 11. Найти базис ортогонального дополнения линейного подпространства для соответствующего линейного подпространства решений ОСЛАУ задания 3. Написать ОСЛАУ, соответствующую подпространству .








Дата добавления: 2015-09-07; просмотров: 9173. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Studopedia.info - Студопедия - 2014-2023 год . (0.009 сек.) русская версия | украинская версия