Доказательство. Согласно определению размерности в пространстве E найдется n линейно независимых элементов f1, f2,
Согласно определению размерности в пространстве E найдется n линейно независимых элементов f1, f2,…, fn. Докажем, что можно построить n элементов e1, e2,…, en, линейно выражающихся через f1, f2,…, fn и образующих ортонормированный базис (то есть удовлетворяющих соотношениям 1, при i=k (ei,ek)= 0, при i≠k Проведем доказательство возможности построения таких элементов e1, e2,…, en методом математической индукции. Если имеется только один элемент f1, то для построения элемента e1 с нормой, равной единице, достаточно нормировать f1, то есть умножить этот элемент на число [(f1,f1)1/2]-1, обратное его норме. Мы получим при этом элемент e1=[(f1,f1)1/2]-1f1 с нормой, равной единице. Считая, что m – целое число, меньше n, предположим, что нам удалось построить m элементов e1, e2,…, em, линейно выражающихся через f1, f2,…, fm попарно ортогональных и имеющих нормы, равные единице. Докажем, что к этим элементам e1, e2,…, em можно присоединить еще один элемент em+1, линейно выражающийся через f1, f2,…, fm+1, ортогональный к каждому из элементов e1, e2,…, em и имеющий норму, равную единице. Убедимся в том, что этот элемент em+1 имеет вид em+1=αm+1[fm+1-(fm+1,em)em-(fm+1,em-1)em-1-…-(fm+1,e1)e1], где αm+1 – некоторое вещественное число. В самом деле, элемент em+1 линейно выражается через f1, f2,…, fm+1 (в силу того, что он линейно выражается через e1, e2,…, em, fm+1, а каждый из элементов e1, e2,…, em линейно выражается через f1, f2,…, fm). Отсюда сразу следует, что при αm+1≠0 элемент em+1 заведомо не является нулевым (ибо в противном случае являлась бы нулевым элементом некоторая линейная комбинация линейно независимых элементов f1, f2,…, fm+1, в которой в силу em+1=αm+1[fm+1-(fm+1,em)em-(fm+1,em-1)em-1-…-(fm+1,e1)e1] отличен от нуля коэффициент при fm+1). Далее из того, что элементы e1, e2,…, em попарно ортогональны и имеют нормы, равные единицы, и из соотношения em+1=αm+1[fm+1-(fm+1,em)em-(fm+1,em-1)em-1-…-(fm+1,e1)e1] сразу же вытекает, что скалярное произведение (em+1,ek) равно нулю для любого номера k равного 1, 2,…, m. Для завершения индукции остается доказать, что число αm+1 можно выбрать так, что норма элемента em+1=αm+1[fm+1-(fm+1,em)em-(fm+1,em-1)em-1-…-(fm+1,e1)e1] будет равна единице. Выше уже установлено, что при αm+1≠0 элемент em+1, а, стало быть, и элемент, заключенный в em+1=αm+1[fm+1-(fm+1,em)em-(fm+1,em-1)em-1-…-(fm+1,e1)e1] em+1=αm+1[fm+1-(fm+1,em)em-(fm+1,em-1)em-1-…-(fm+1,e1)e1] в квадратные скобки, не является нулевым. Стало быть, для того чтобы нормировать элемент, заключенный в квадратные скобки, следует взять число αm+1 обратным положительной норме этого заключенного в квадратные скобки элемента. При этом норма em+1 будет равна единице. Теорема доказана. Определение. Процесс ортогонализации – алгоритм построения по данной системе n линейно независимых элементов f1, f2,…, fn системы n попарно ортогональных элементов e1, e2,…, en, норма каждого из которых равна единице. e1=f1/[(f1,f1)]1/2; e2=g2/[(g2,g2)]1/2, где g2=f2-(f2,e1)e1; e3=g3/[(g3,g3)]1/2, где g3=f3-(f3,e2)e2-(f3,e1)e1; en=gn/[(gn,gn)]1/2, где gn=fn-(fn,en-1)en-1-…-(fn,e1)e1.
Пусть e1, e2,…, en – произвольный ортонормированный базис n-мерного евклидова пространства E, а x и y – два произвольных элементов этого пространства. Найдем выражение скалярного произведения (x,y) этих элементов через их координаты относительно базиса e1, e2,…, en. Обозначим координаты x и y относительно базиса e1, e2,…, en соответственно через x1, x2,…, xn и y1, y2,…, yn, то есть предположим, что x=x1e1+x2e2+…+xnen, y=y1e1+y2e2+…+ynen. Тогда (x,y)=(x1e1+x2e2+…+xnen, y1e1+y2e2+…+ynen). Из последнего равенства в силу аксиом скалярного произведения и соотношений 1, при i=k (ei,ek)= 0, при i≠k получим (x,y)=(Ʃni=1xiei,Ʃnk=1ykek)= Ʃni=1Ʃnk=1xiyk(eiek)=x1y1+…+xnyn. Итак, окончательно (x,y)=x1y1+…+xnyn. Таким образом, в ортонормированном базисе скалярное произведение двух любых элементов равно сумме произведений соответствующих координат этих элементов. Выясним смысл координат произвольного элемента x относительно произвольного ортонормированного базиса e1, e2,…, en n-мерного евклидова пространства E. Обозначим координаты элемента x относительно e1, e2,…, en через x1, x2,…, xn, то есть предположим, что x=x1e1+x2e2+…+xnen. Обозначим далее через k любой из номеров 1, 2,…, n и умножим обе части x=x1e1+x2e2+…+xnen скалярно на элемент ek. На основании аксиом скалярного произведения и соотношений 1, при i=k (ei,ek)= 0, при i≠k получим (x,ek)=(Ʃni=1xiei,ek)= Ʃni=1xi(eiek)=xk. Таким образом, координаты произвольного элемента относительно ортонормированного базиса равны скалярным произведениям этого элемента на соответствующие базисные элементы. Поскольку скалярное произведение произвольного элемента x на элемент e, имеющий норму, равную единице, естественно назвать проекцией элемента x на элемент e, то можно сказать, что координаты произвольного элемента относительно ортонормированного базиса равны проекция этого элемента на соответствующие базисные элементы.
Пусть G – произвольное подпространство n-мерного евклидова пространства E. Определение. Совокупность F всех элементов y пространства E, ортогональных к каждому элементу x подпространства G, называется ортогональным дополнением подпространства G. Ортогональное дополнение F является подпространством пространства E (пусть y1, y2єF, то есть (y1,x)=0 и (y2,x)=0 для любых xєG. Тогда (α1y1+α2y2,x)=α1(y1,x)+α2(y2,x)=0) Теорема. Всякое n-мерное евклидово пространство E представляет собой прямую сумму своего произвольного подпространства G и его ортогонального дополнения F.
|