Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. Для любого вещественного числа λ, в силу аксиомы 4скалярного произведения, справедливо неравенство (λx-y





Для любого вещественного числа λ, в силу аксиомы 4скалярного произведения, справедливо неравенство (λx-y, λx-y)≥0. В силу аксиом 1-3 последнее неравенство можно переписать в виде λ2(x,x)-2λ(x,y)+(y,y)≥0. Необходимым и достаточным условием неотрицательности последнего квадратного трехчлена является неположительность его дискриминанта, то есть неравенство (x,y)2-(x,x)(y,y)≤0. Из этого неравенства сразу вытекает неравенство (x,y)2≤(x,x)(y,y). Теорема доказана.

 

  1. Нормированное линейное пространство. Норма в евклидовом пространстве. Угол между элементами линейного пространства. Ортогональные элементы. Теорема Пифагора.

Определение. Линейное пространство L называется нормированным, если выполнены следующие два требования:

  1. Имеется правило, посредством которого каждому элементу x пространства L ставится в соответствие вещественное число, называемое нормой (или длинной) указанного элемента и обозначаемое символом ||x||.
  2. Указанное правило подчинено следующим трем аксиомам:

1) ||x||>0, если x – ненулевой элемент; ||x||=0, если x – нулевой элемент

2) ||λx||=|λx|| для любого элемента x и любого вещественного числа λ

3) Для любых двух элементов x и y справедливо следующее неравенство ||x+y||≤||x||+||y|| называемое неравенством треугольника (или неравенство Минковского)

Теорема. Всякое евклидово пространство является нормированным, если в нем норму любого элемента x определить равенством ||x||=(x,x)1/2







Дата добавления: 2015-09-07; просмотров: 491. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия