Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. Для любого вещественного числа λ, в силу аксиомы 4скалярного произведения, справедливо неравенство (λx-y





Для любого вещественного числа λ, в силу аксиомы 4скалярного произведения, справедливо неравенство (λx-y, λx-y)≥0. В силу аксиом 1-3 последнее неравенство можно переписать в виде λ2(x,x)-2λ(x,y)+(y,y)≥0. Необходимым и достаточным условием неотрицательности последнего квадратного трехчлена является неположительность его дискриминанта, то есть неравенство (x,y)2-(x,x)(y,y)≤0. Из этого неравенства сразу вытекает неравенство (x,y)2≤(x,x)(y,y). Теорема доказана.

 

  1. Нормированное линейное пространство. Норма в евклидовом пространстве. Угол между элементами линейного пространства. Ортогональные элементы. Теорема Пифагора.

Определение. Линейное пространство L называется нормированным, если выполнены следующие два требования:

  1. Имеется правило, посредством которого каждому элементу x пространства L ставится в соответствие вещественное число, называемое нормой (или длинной) указанного элемента и обозначаемое символом ||x||.
  2. Указанное правило подчинено следующим трем аксиомам:

1) ||x||>0, если x – ненулевой элемент; ||x||=0, если x – нулевой элемент

2) ||λx||=|λx|| для любого элемента x и любого вещественного числа λ

3) Для любых двух элементов x и y справедливо следующее неравенство ||x+y||≤||x||+||y|| называемое неравенством треугольника (или неравенство Минковского)

Теорема. Всякое евклидово пространство является нормированным, если в нем норму любого элемента x определить равенством ||x||=(x,x)1/2







Дата добавления: 2015-09-07; просмотров: 491. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия