Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. Для любого вещественного числа λ, в силу аксиомы 4скалярного произведения, справедливо неравенство (λx-y





Для любого вещественного числа λ, в силу аксиомы 4скалярного произведения, справедливо неравенство (λx-y, λx-y)≥0. В силу аксиом 1-3 последнее неравенство можно переписать в виде λ2(x,x)-2λ(x,y)+(y,y)≥0. Необходимым и достаточным условием неотрицательности последнего квадратного трехчлена является неположительность его дискриминанта, то есть неравенство (x,y)2-(x,x)(y,y)≤0. Из этого неравенства сразу вытекает неравенство (x,y)2≤(x,x)(y,y). Теорема доказана.

 

  1. Нормированное линейное пространство. Норма в евклидовом пространстве. Угол между элементами линейного пространства. Ортогональные элементы. Теорема Пифагора.

Определение. Линейное пространство L называется нормированным, если выполнены следующие два требования:

  1. Имеется правило, посредством которого каждому элементу x пространства L ставится в соответствие вещественное число, называемое нормой (или длинной) указанного элемента и обозначаемое символом ||x||.
  2. Указанное правило подчинено следующим трем аксиомам:

1) ||x||>0, если x – ненулевой элемент; ||x||=0, если x – нулевой элемент

2) ||λx||=|λx|| для любого элемента x и любого вещественного числа λ

3) Для любых двух элементов x и y справедливо следующее неравенство ||x+y||≤||x||+||y|| называемое неравенством треугольника (или неравенство Минковского)

Теорема. Всякое евклидово пространство является нормированным, если в нем норму любого элемента x определить равенством ||x||=(x,x)1/2







Дата добавления: 2015-09-07; просмотров: 491. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия