Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. Допустим, что среди элементов x1, x2, , xn имеется r линейно независимых элементов (обозначим x1, x2,





Допустим, что среди элементов x1, x2,…, xn имеется r линейно независимых элементов (обозначим x1, x2,…, xr), а любые (r+1) из элементов x1, x2,…, xn линейно зависимы. Тогда каждый из элементов x1, x2,…, xn представляет собой некоторую линейную комбинацию элементов x1, x2,…, xr, и поскольку по определению каждый элемент линейной оболочки L(x1, x2,…, xn) представляет собой некоторую линейную комбинацию элементов x1, x2,…, xn, то каждый элемент указанной линейной оболочки представляет собой некоторую линейную комбинацию одних только элементов x1, x2,…, xr. Но это и означает, что система линейно независимых элементов x1, x2,…, xr образует базис линейной оболочки L(x1, x2,…, xn) и что размерность L(x1, x2,…, xn) равна r. Теорема доказана.

 

  1. Сумма и пересечение подпространств. Теорема о сумме размерностей произвольных подпространств.

Пусть K1 и K2 – два произвольных подпространства одного и того же линейного пространства L.

Определение. Совокупность всех элементов x пространства L, принадлежащих одновременно K1 и K2, образуют подпространство пространства L, называемое пересечением подпространств K1 и K2.

Определение. Совокупность всех элементов пространства L вида x+y, где x – элемент подпространства K1, а y – элемент подпространства K2, образует подпространство пространства L, называемое суммой подпространств K1 и K2.







Дата добавления: 2015-09-07; просмотров: 350. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия