Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. Обозначим через K0 пересечение K1 и K2, а через K’ – сумму K1 и K2





Обозначим через K0 пересечение K1 и K2, а через K – сумму K1 и K2. Считая K0 k-мерным, выберем в нем базис e1, e2,…, ek. Дополним базис до базиса e1,…ek, g1,…, gl в подпространстве K1 и до базиса e1,…, ek, f1,…, fm в подпространстве L2. Достаточно доказать, что элементы g1,…, gl, e1,…, ek, f1,…, fm являются базисом суммы K подпространств K1 и K2. Для этого в свою очередь достаточно доказать, что элементы g1,…, gl, e1,…, ek, f1,…, fm линейно независимы и что любой элемент x суммы K представляет собой некоторую линейную комбинацию элементов g1,…, gl, e1,…, ek, f1,…, fm.

Сначала докажем, что элементы g1,…, gl, ek, f1,…, fm линейно независимы. Предположим, что некоторая линейная комбинация элементов g1,…, gl, e1,…, ek, f1,…, fm представляет собой нулевой элемент, то есть справедливо равенство α1g1+…+αlgl1e1+…+βkek1f1+…+γmfm=0 или α1g1+…+αlgl1e1+…+βkek=-γ1f1-…-γmfm. Так как левая часть является элементом K1, а правая часть является элементом K2, то как левая, так и правая часть принадлежит пересечению K0 подпространств K1 и K2. Отсюда следует, в частности, что правая часть представляет собой некоторую линейную комбинацию элементов e1, e2,…, ek, то есть найдутся такие числа λ1,…, λk, что -γ1f1-…-γmfm1e1+…+λkek.

В силу линейной независимости базисных элементов e1,…, ek, f1,…, fm равенство -γ1f1-…-γmfm1e1+…+λkek возможно лишь в случае, когда все коэффициенты γ1,…γm, λ1,…, λk равны нулю. Но при этом из α1g1+…+αlgl1e1+…+βkek1f1+…+γmfm=0 мы получим, что α1g1+…+αlgl1e1+…+βkek=0. В силу линейной независимости базисных элементов e1,…ek, g1,…, gl равенство α1g1+…+αlgl1e1+…+βkek=0 возможно лишь в случае, когда все коэффициенты α1,…,αl1,…, βk равны нулю. Тем самым мы установили, что равенство α1g1+…+αlgl1e1+…+βkek1f1+…+γmfm=0 возможно лишь в том случае, когда все коэффициенты α1,…,αl1,…, βk, γ1,…γm равны нулю, а это и доказывает линейную независимость элементов g1,…, gl, e1,…, ek, f1,…, fm.

Остается доказать, что любой элемент x суммы K представляет собой некоторую линейную комбинацию элементов g1,…, gl, e1,…, ek, f1,…, fm, но это сразу следует из того, что этот элемент x представляет собой (по определению K) сумму некоторого элемента x1 подпространства K1, являющегося линейной комбинацией элементов e1,…ek, g1,…, gl, и некоторого элемента x2 подпространства K2, являющегося линейной комбинацией элементов e1,…, ek, f1,…, fm. Теорема доказана.

 

  1. Разложение линейного пространства в прямую сумму подпространств. Определение и теорема.

Пусть L1 и L2 – два подпространства линейного n-мерного пространства L.

Определение. Пространство L представляет собой прямую сумму подпространств L1 и L2, если каждый элемент x пространства L может быть единственным способом представлен в виде суммы x=x1+x2 элемента x1 подпространства L1 и элемента x2 подпространства L2.

Обозначение. L=L1 L2 (Разложение пространства L в прямую сумму подпространств L1 и L2)

Теорема. Для того чтобы n-мерное пространство L представляло собой прямую сумму подпространств L1 и L2, достаточно, чтобы пересечение L1 и L2 содержало только нулевой элемент и чтобы размерность L бы равна сумме размерностей подпространств L1 и L2.







Дата добавления: 2015-09-07; просмотров: 421. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия