Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Прямое и обратное преобразование координат при изменении базиса.





Пусть базис e1, e2,…, en преобразуется в базис e1, e2,…, en с помощью невырожденной матрицы A, так что обратное преобразование базисов задается матрицей

A11/∆ A21/∆… An1/∆

B= A12/∆ A22/∆… An2/∆

A1n/∆ A2n/∆… Ann/∆

Пусть далее x – произвольный элемент рассматриваемого линейного пространства L, (x1, x2,.., xn) – его координаты относительно первого базиса e1, e2,…, en, (x1, x2,…, xn) – его координаты относительно второго базиса e1, e2,…, en, так что x=x1e1,+x2e2+…+xnen=x1e1+x2e2+…+xnen. Подставив в это равенство вместо элементов e1, e2,…, en их выражения, определяемые формулами,

e1=(A11/∆)e1+(A21/∆)e2+…+(An1/∆)en

e2=(A12/∆)e1+(A22/∆)e2+…+(An2/∆)en

en=(A1n/∆)e1+(A2n/∆)e2+…+(Ann/∆)en

получим x=x1e1,+x2e2+…+xnen=x1((A11/∆)e1+(A21/∆)e2+…+(An1/∆)en)+x2((A12/∆)e1+(A22/∆)e2+…+(An2/∆)en)+…+xn(A1n/∆)e1+(A2n/∆)e2+…+(Ann/∆)en). Из последнего равенства (в силу единственности разложения по базису e1, e2,…, en) сразу вытекает формулы перехода от координат (x1, x2,.., xn) относительно первого базиса к координатам (x1, x2,…, xn) относительно второго базиса.

x1=(A11/∆)x1+(A12/∆)x2+…+(A1n/∆)xn

x2=(A21/∆)x1+(A22/∆)x2+…+(A2n/∆)xn

xn=(An1/∆)x1+(An2/∆)x2+…+(Ann/∆)xn

Эти формулы показывают, что переход от координат (x1, x2,.., xn) к координатам (x1, x2,…, xn) осуществляется с помощью матрицы транспонированной к обратной матрице B.

A11/∆ A12/∆… A1n/∆

C= A21/∆ A22/∆… A2n/∆

An1/∆ An2/∆… Ann/∆

Вывод.

Если переход от первого базиса ко второму осуществляется с помощью невырожденной матрицы A, то переход от координат произвольного элемента относительно первого базиса к координатам этого элемента относительно второго базиса осуществляется с помощью матрицы (A-1), транспонированной к обратной матрице (A-1).

 

  1. Вещественное евклидово пространство, примеры. Неравенство Коши-Буняковского.

Определение. Вещественное линейной пространство L называется вещественным евклидовым пространством (или просто евклидовым пространством), если выполнены следующие два требования:

  1. Имеется правило, посредством которого любым двум элементам этого пространства x и y ставится в соответствие вещественное число, называемое скалярным произведением этих элементов и обозначаемое символом (x,y)
  2. Указанное правило подчинено следующим четырем аксиомам:

1) (x,y)=(y,x) (переместительное свойство или симметрия)

2) (x1+x2,y)=(x1,y)+(x2,y) (распределительное свойство)

3) (λx,y)=λ(x,y) для любого вещественного λ

4) (x,x)>0, если x – ненулевой элемент; (x,x)=0, если x – нулевой элемент.

Евклидово пространство называется конкретным, если природа изучаемых объектов и вид перечисленных правил указаны.







Дата добавления: 2015-09-07; просмотров: 1251. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия