Доказательство. Выберем некоторый базис e1, e2, , ek в подпространстве L1 и некоторый базис g1, g2, , gl в подпространстве L2
Выберем некоторый базис e1, e2,…, ek в подпространстве L1 и некоторый базис g1, g2,…, gl в подпространстве L2. Докажем, что объединение этих базисов e1,…, ek, g1,…, gl представляет собой базис всего пространства L. Так как по условию теоремы размерность n всего пространства L равна сумме (k+l) размерностей L1 и L2, то достаточно доказать линейную независимость элементов e1,…, ek, g1,…, gl. Предположим, что некоторая линейная комбинация элементов e1,…, ek, g1,…, gl представляет собой нулевой элемент, то есть справедливо равенство α1e1+…+αkek+β1g1+…+βlgl=0 или α1e1+…+αkek=-β1g1-…-βlgl. Так как левая часть является элементом L1, а правая – элементом L2, а пересечение L1 и L2 содержит лишь нулевой элемент, то как левая, так и правая часть представляет собой нулевой элемент, а это(на основании линейной независимости элементов каждого из базисов e1,…, ek и g1,…, gl) возможно лишь при условии α1=…=αk=0, β1=…=βl=0. Тем самым мы установили, что равенство α1e1+…+αkek+β1g1+…+βlgl=0 возможно лишь при условии α1=…=αk=0, β1=…=βl=0, а это и доказывает линейную независимость элементов e1,…, ek, g1,…, gl и тот факт, что элементы e1,…, ek, g1,…, gl образуют базис всего пространства L. Пусть теперь x – любой элемент L. Разложив его по базису e1,…, ek, g1,…, gl, будем иметь x=λ1e1+…+λkek+μ1g1+…+μlgl или x=x1+x2, где x1= λ1e1+…+λkek – элемент L1, а x2= μ1g1+…+μlgl – элемент L2. Остается доказать, что представление x=x1+x2 является единственным. Предположим, что, кроме x=x1+x2, справедливо и еще одно представление x=x’1+x’2, где x’1 – элемент L1, а x’2 – элемент L2. Вычитая x=x’1+x’2 из x=x1+x2, получим, что 0=x1-x’1+x2-x’2 или x1-x’1=x2-x’2. Так как в левой части последнего равенства стоит элемент L1, а в правой – элемент L2, и поскольку пересечение L1 и L2 содержит лишь нулевой элемент, то из этого равенства следует, что x1-x’1=0, x2-x’2=0, то есть x1=x’1, x2=x’2. Теорема доказана.
Пусть e1, e2,…, en и e’1, e’2,…, e’n – два произвольных базиса n-мерного линейного пространства L. Как всякий элемент пространства L, каждый элемент e’1, e’2,…, e’n может быть разложен по базису e1, e2,…, en. Предположим, что элементы e’1, e’2,…, e’n выражаются через e1, e2,…, en с помощью формул e’1=α11e1+α12e2+…+α1nen, e’2= α21e1+α22e2+…+α2nen, e’n= αn1e1+αn2e2+…+αnnen.
|