Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры. 1) Нулевое подпространство (то есть подмножество линейного пространства L, состоящее из одного нулевого элемента)





1) Нулевое подпространство (то есть подмножество линейного пространства L, состоящее из одного нулевого элемента)

2) Все пространство L (которое можно рассматривать как подпространство)

Оба эти подпространства принято называть несобственными. Собственные подпространства – подпространство, отличное от всего пространства и содержащее хотя бы один ненулевой элемент.

3) Подмножество {Pn(t)} всех алгебраических многочленов степени, не превышающих натурального числа n, в линейном пространстве C[a,b] всех функций x=x(t), определенных и непрерывных на сегменте a≤t≤b

4) Подмножество B2 всех свободных векторов, параллельных некоторой плоскости, в линейном пространстве B3 всех свободных векторов

Пусть x1, x2,…, xn – совокупность элементов некоторого линейного пространства L.

Определение. Линейной оболочкой элементов x1, x2,…, xn называется совокупность всех линейных комбинаций этих элементов, то есть множество элементов вида α1x12x2+…+αnxn, где α1, α2,…, αn – какие угодно вещественные числа.

Линейную оболочку элементов x1, x2,…, xn обозначают символом K(x1, x2,…, xn). Всякая линейная оболочка является подпространством основного линейного пространства L. Линейная оболочка элементов x1, x2,…, xn является наименьшим подпространством, содержащим элементы x1, x2,…, xn.







Дата добавления: 2015-09-07; просмотров: 475. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия