Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. Достаточно доказать, что для нормы, определенной соотношением ||x||=(x,x)1/2 справедливы аксиомы 1-3 из определения нормированного пространства





Достаточно доказать, что для нормы, определенной соотношением ||x||=(x,x)1/2 справедливы аксиомы 1-3 из определения нормированного пространства. Справедливость для нормы аксиомы 1 сразу вытекает из аксиомы 4 скалярного произведения. Справедливость для нормы аксиомы 2 почти непосредственно вытекает из аксиом 1 и 3 скалярного произведения. Остается убедиться в справедливости для нормы аксиомы 3, то есть неравенства ||x+y||≤||x||+||y||. Будем опираться на неравенство Коши-Буняковского (x,y)2≤(x,x)(y,y), которое перепишем в виде |(x,y)|≤(x,x)1/2(y,y)1/2. С помощью последнего неравенства, аксиом 1-4 скалярного произведения и определения нормы получим ||x+y||=(x+y,x+y)1/2=((x,x)+2(x,y)+(y,y))1/2≤((x,x)+(x,x)1/2(y,y)1/2+(y,y))1/2=([(x,x)1/2+(y,y)1/2]2)1/2=(x,x)1/2+(y,y)1/2=||x||+||y||. Теорема доказана.

Следствие. Во всяком евклидовом пространстве с нормой элементов, определяемой соотношением ||x||=(x,x)1/2, для любых двух элементов x и y справедливо неравенство треугольника ||x+y||≤||x||+||y||.

В любом вещественном евклидовом пространстве можно ввести понятие угла между двумя произвольными элементами x и y этого пространства. Угол ϕ между элементами x и y тот (изменяющийся от 0 до π) угол, косинус которого определяется соотношение cosϕ=(x,y)/||x|y||=(x,y)/(x,x)1/2(y,y)1/2 (данное определение угла корректно, ибо в силу неравенства Коши-Буняковского дробь, стоящая в правой части последнего равенства, по модулю не превосходит единицу).

Определение. Два произвольных элемента x и y евклидова пространства E называются ортогональными, если скалярное произведение этих элементов (x,y) равно нулю (в этом случае косинус угла ϕ между элементами x и y будет равен нулю).

Назовем сумму x+y двух ортогональных элементов x и y гипотенузой прямоугольного треугольника, построенного на элементах x и y.

Во всяком евклидовом пространстве справедлива теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов. Поскольку x и y ортогональны и (x,y)=0, то в силу аксиом и определения нормы ||x+y||2=(x+y,x+y)=(x,x)+2(x,y)+(y,y)=(x,x)+(y,y)=||x||2+||y||2.

Запишем норму, неравенство Коши-Буняковского и неравенство треугольника для конкретных евклидовых пространств.

1) В евклидовом пространстве всех свободных векторов с обычным определением скалярного произведения норма вектора a совпадает с его длиной |a|, неравенство Коши-Буняковского приводится к виду (a,b)2≤|a|2|b|2, а неравенство треугольника – к виду |a+b|≤|a|+|b|

2) В евклидовом пространстве C[a,b] всех функций x=x(t), определенныx и непрерывных на сегменте a≤t≤b со скалярным произведением, определенным как интеграл (в пределах от a до b) от произведений функций x(t) и y(t), норма элемента x=x(t) равна (∫bax2(t)dt)1/2, а неравенства Коши-Буняковского и треугольника имеют виду [∫bax(t)y(t)dt]2≤∫bax2(t)dt∫bay2(t)dt, (∫ba[x(t)+y(t)]2)1/2≤(∫bax2(t)dt)1/2+(∫bay2(t)dt)1/2

3) В евклидовом пространстве En упорядоченных совокупностей n вещественных чисел со скалярным произведением (x,y)=(x1y1+…+xnyn) норма любого элемента x=(x1, x2,…, xn) равна ||x||=(x21+x22+…+x2n)1/2, а неравенство Коши-Буняковского и треугольника имеют вид (x1y1+x2y2+…+xnyn)≤(x21+x22+…+x2n)(y21+y22+…+y2n, [(x1+y1)2+…+(xn+yn)2]1/2≤(x21+x22+…+x2n)1/2+(y21+y22+…+y2n)1/2.

 

 

  1. Ортонормированный базис в евклидовом пространстве. Теорема о существовании ортонормированного базиса. Процесс ортогонализации.

Определение. Будем говорить, что n элементов e1, e2,…, en n-мерного евклидова пространства Е образуют ортонормированный базис этого пространства, если эти элементы попарно ортогональны и норма каждого из этих элементов равна 1, то есть если

1, при i=k

(ei,ek)=

0, при i≠k

Для конкретности докажем, что такая система линейно независима. α1e1+…+αnen=0, умножим скалярно это равенство на ek (k от 1 до n). Мы получим αk=0 => e1, e2,…, en линейно независимы.

Теорема. Во всяком n-мерном евклидовом пространстве E существует ортонормированный базис.







Дата добавления: 2015-09-07; просмотров: 1474. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия