Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. Достаточно доказать, что для нормы, определенной соотношением ||x||=(x,x)1/2 справедливы аксиомы 1-3 из определения нормированного пространства





Достаточно доказать, что для нормы, определенной соотношением ||x||=(x,x)1/2 справедливы аксиомы 1-3 из определения нормированного пространства. Справедливость для нормы аксиомы 1 сразу вытекает из аксиомы 4 скалярного произведения. Справедливость для нормы аксиомы 2 почти непосредственно вытекает из аксиом 1 и 3 скалярного произведения. Остается убедиться в справедливости для нормы аксиомы 3, то есть неравенства ||x+y||≤||x||+||y||. Будем опираться на неравенство Коши-Буняковского (x,y)2≤(x,x)(y,y), которое перепишем в виде |(x,y)|≤(x,x)1/2(y,y)1/2. С помощью последнего неравенства, аксиом 1-4 скалярного произведения и определения нормы получим ||x+y||=(x+y,x+y)1/2=((x,x)+2(x,y)+(y,y))1/2≤((x,x)+(x,x)1/2(y,y)1/2+(y,y))1/2=([(x,x)1/2+(y,y)1/2]2)1/2=(x,x)1/2+(y,y)1/2=||x||+||y||. Теорема доказана.

Следствие. Во всяком евклидовом пространстве с нормой элементов, определяемой соотношением ||x||=(x,x)1/2, для любых двух элементов x и y справедливо неравенство треугольника ||x+y||≤||x||+||y||.

В любом вещественном евклидовом пространстве можно ввести понятие угла между двумя произвольными элементами x и y этого пространства. Угол ϕ между элементами x и y тот (изменяющийся от 0 до π) угол, косинус которого определяется соотношение cosϕ=(x,y)/||x|y||=(x,y)/(x,x)1/2(y,y)1/2 (данное определение угла корректно, ибо в силу неравенства Коши-Буняковского дробь, стоящая в правой части последнего равенства, по модулю не превосходит единицу).

Определение. Два произвольных элемента x и y евклидова пространства E называются ортогональными, если скалярное произведение этих элементов (x,y) равно нулю (в этом случае косинус угла ϕ между элементами x и y будет равен нулю).

Назовем сумму x+y двух ортогональных элементов x и y гипотенузой прямоугольного треугольника, построенного на элементах x и y.

Во всяком евклидовом пространстве справедлива теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов. Поскольку x и y ортогональны и (x,y)=0, то в силу аксиом и определения нормы ||x+y||2=(x+y,x+y)=(x,x)+2(x,y)+(y,y)=(x,x)+(y,y)=||x||2+||y||2.

Запишем норму, неравенство Коши-Буняковского и неравенство треугольника для конкретных евклидовых пространств.

1) В евклидовом пространстве всех свободных векторов с обычным определением скалярного произведения норма вектора a совпадает с его длиной |a|, неравенство Коши-Буняковского приводится к виду (a,b)2≤|a|2|b|2, а неравенство треугольника – к виду |a+b|≤|a|+|b|

2) В евклидовом пространстве C[a,b] всех функций x=x(t), определенныx и непрерывных на сегменте a≤t≤b со скалярным произведением, определенным как интеграл (в пределах от a до b) от произведений функций x(t) и y(t), норма элемента x=x(t) равна (∫bax2(t)dt)1/2, а неравенства Коши-Буняковского и треугольника имеют виду [∫bax(t)y(t)dt]2≤∫bax2(t)dt∫bay2(t)dt, (∫ba[x(t)+y(t)]2)1/2≤(∫bax2(t)dt)1/2+(∫bay2(t)dt)1/2

3) В евклидовом пространстве En упорядоченных совокупностей n вещественных чисел со скалярным произведением (x,y)=(x1y1+…+xnyn) норма любого элемента x=(x1, x2,…, xn) равна ||x||=(x21+x22+…+x2n)1/2, а неравенство Коши-Буняковского и треугольника имеют вид (x1y1+x2y2+…+xnyn)≤(x21+x22+…+x2n)(y21+y22+…+y2n, [(x1+y1)2+…+(xn+yn)2]1/2≤(x21+x22+…+x2n)1/2+(y21+y22+…+y2n)1/2.

 

 

  1. Ортонормированный базис в евклидовом пространстве. Теорема о существовании ортонормированного базиса. Процесс ортогонализации.

Определение. Будем говорить, что n элементов e1, e2,…, en n-мерного евклидова пространства Е образуют ортонормированный базис этого пространства, если эти элементы попарно ортогональны и норма каждого из этих элементов равна 1, то есть если

1, при i=k

(ei,ek)=

0, при i≠k

Для конкретности докажем, что такая система линейно независима. α1e1+…+αnen=0, умножим скалярно это равенство на ek (k от 1 до n). Мы получим αk=0 => e1, e2,…, en линейно независимы.

Теорема. Во всяком n-мерном евклидовом пространстве E существует ортонормированный базис.







Дата добавления: 2015-09-07; просмотров: 1474. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия